Toggle light / dark theme

The shape of the universe revealed through algebraic geometry

How can the behavior of elementary particles and the structure of the entire universe be described using the same mathematical concepts? This question is at the heart of recent work by the mathematicians Claudia Fevola from Inria Saclay and Anna-Laura Sattelberger from the Max Planck Institute for Mathematics in the Sciences, recently published in the Notices of the American Mathematical Society.

Mathematics and physics share a close, reciprocal relationship. Mathematics offers the language and tools to describe physical phenomena, while physics drives the development of new mathematical ideas. This interplay remains vital in areas such as and cosmology, where advanced mathematical structures and physical theory evolve together.

In their article, the authors explore how algebraic structures and geometric shapes can help us understand phenomena ranging from particle collisions such as happens, for instance, in particle accelerators to the large-scale architecture of the cosmos. Their research is centered around . Their recent undertakings also connect to a field called positive geometry—an interdisciplinary and novel subject in mathematics driven by new ideas in and cosmology.

Molecular hybridization achieved through quantum vacuum manipulation

Interactions between atoms and molecules are facilitated by electromagnetic fields. The bigger the distance between the partners involved, the weaker these mutual interactions are. In order for the particles to be able to form natural chemical bonds, the distance between them must usually be approximately equal to their diameter.

Using an which strongly alters the , scientists at the Max Planck Institute for the Science of Light (MPL) have succeeded for the first time in optically “bonding” several molecules at greater distances. The physicists are thus experimentally creating synthetic states of coupled molecules, thereby establishing the foundation for the development of new hybrid light-matter states. The study is published in the journal Proceedings of the National Academy of Sciences.

Atoms and molecules have clearly defined, discrete energy levels. When they are combined to form a , the energy states change. This process is referred to as molecular hybridization and is characterized by the overlap of electron orbitals, i.e., the areas where electrons typically reside. However, at a scale of a few nanometers, the interaction becomes so weak that molecules are no longer able to communicate with each other.

Unlocking the sun’s secret messengers: DUNE experiment set to reveal new details about solar neutrinos

Neutrinos—ghostly particles that rarely interact with normal matter—are the sun’s secret messengers. These particles are born deep within the sun, a byproduct of the nuclear fusion process which powers all stars.

Neutrinos escape the sun and stream through Earth in immense quantities. These particles are imprinted with information about the inner workings of the sun.

Our new theoretical paper published in Physical Review Letters shows that the Deep Underground Neutrino Experiment (DUNE), currently under construction, will help us unlock the deepest secrets of these solar messengers.

Columbia’s radiation-proof chip built to decode the universe at CERN

A new specialized, radiation-hardened chip has been designed for CERN’s Large Hadron Collider (LHC) upgrade.

Engineers at Columbia University have developed this analog-to-digital converter (ADC) chip.

The custom-designed chips will be used in the ATLAS detector to measure up to 1.5 billion particle collisions per second.

Scientists Say the Universe Might Be a HOAX — Here’s Why

Which leads us to a strange but necessary question:

If the universe is just structure — just syntax — then where’s the meaning?
Because that’s what we’ve been trying to find all along, isn’t it? Not just patterns. Not just formulas. But something is behind it. Something in it. A message. A cause. A reason why anything is the way it is. Something we could point to and say, “There — that’s what it’s all about.”

3:04 The Illusion of Physical Reality — Is Anything Really There?
10:16 Quantum Mechanics — When Reality Stops Making Sense.
18:04 The Holographic Principle — A Universe Made of Information.
26:24 Quantum Fields, Not Particles — The Fabric Beneath Matter.
33:29 Emergence — Time, Space, and Matter Are Not Fundamental.
41:49 Simulation Theory — But with a Physics Twist.
49:12 Quantum Gravity and the End of Local Reality.
57:29 Consciousness and the Collapse of Reality.
1:06:11 The “It from Bit” Hypothesis.
1:15:37 Experimental Clues — When the Universe Disobeys Logic.
1:23:46 If the Universe Isn’t Real, What Are We?
1:33:13 Could Physics Be Telling Us There’s No ‘There’ There?
1:39:33 Is the Universe a Language Without a Speaker?
1:46:53 So… What’s Left? Do We Actually Exist?
1:52:07 The Ultimate Twist — Could “Nothing” Be the Most Real Thing?
1:57:07 What If the Universe Is the Biggest Illusion Ever Constructed?

If you keep peeling everything back, does anything actually remain?
That’s the uncomfortable part. Because there’s a difference between saying “nothing exists the way we thought” and saying “nothing exists at all.” The first is about interpretation. The second is about presence. One reframes reality. The other questions whether there’s anything there to reframe.

Einstein was wrong: MIT just settled a 100 year quantum debate

MIT physicists confirm that, like Superman, light has two identities that are impossible to see at once. Physicists at MIT recreated the double-slit experiment using individual photons and atoms held in laser light, uncovering the true limits of light’s wave–particle duality. Their results proved Einstein’s proposal wrong and confirmed a core prediction of quantum mechanics.

MIT physicists have performed an idealized version of one of the most famous experiments in quantum physics. Their findings demonstrate, with atomic-level precision, the dual yet evasive nature of light. They also happen to confirm that Albert Einstein was wrong about this particular quantum scenario.

The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-like nature, and vice versa.

New 3D topological phase of matter exhibits anomalous symmetry at non-zero temperatures

Some phases of matter cannot be described using the conventional framework of symmetry breaking and exhibit a so-called quantum order. One type of quantum order, known as topological order, is characterized by long-range entanglement between particles across an entire system, a ground state degeneracy that depends on the global shape of the system, and a robustness against local disturbances.

Topological phases of matter primarily occur at zero temperature, as thermal fluctuations tend to destroy them and disrupt their underlying order. In a recent paper published in Physical Review Letters, however, researchers at Nanjing University, Yale University and other institutes reported a new 3D topological phase of matter characterized by an anomalous two-form symmetry that occurs at non-zero temperatures.

“In the last several years, we have made substantial progress in our ability to control —over a range of different platforms: , trapped ions, , photonics, and so on,” Tyler D. Ellison, senior author of the paper, told Phys.org.

Astronomers spot the ‘Eye of Sauron’ in deep space

A stunning new image of a cosmic jet has helped astronomers unlock the mystery behind the unusually bright emission of high-energy gamma rays and neutrinos from a peculiar celestial object. The source is a blazar—a type of active galaxy powered by a supermassive black hole devouring matter at the heart of a galaxy. They have captured what looks like the mythical “Eye of Sauron” in the distant universe and may have just solved a decade-long cosmic puzzle.

Massive magnets are on the move: Repurposing electromagnets for research

Plan a route, grab some snacks, and fuel up. Engineers and scientists have been sending massive magnets from U.S. Department of Energy (DOE) national labs on cross-country road trips.

Magnets are at the heart of many scientific instruments at DOE’s Brookhaven National Laboratory. They are not like typical refrigerator magnets, which apply a relatively weak and uniform force to . These electromagnets are often incredibly large and powerful, with variable fields that can be controlled by changing the electric current that runs through them.

One of their applications is to apply magnetic force to subatomic particles. For example, the Relativistic Heavy Ion Collider (RHIC) is made of superconducting electromagnets that steer and focus particle beams as they circulate through the accelerator at nearly the speed of light.

/* */