Menu

Blog

Archive for the ‘particle physics’ category: Page 10

Oct 26, 2024

Ghost Particles on Patrol: Antimatter Detector Revolutionizes Nuclear Reactor Monitoring

Posted by in categories: military, nuclear energy, particle physics

Researchers have developed a new detector that analyzes antineutrinos emitted by nuclear reactors to monitor their activities from great distances.

This technology, which utilizes the phenomena of Cherenkov radiation, could revolutionize how we ensure reactors are not producing material for nuclear weapons, despite challenges from other environmental antineutrinos.

Nuclear Fission and Antimatter Monitoring.

Oct 25, 2024

US nuclear fusion lab hits 200,000 plasma ‘shots’ in a milestone

Posted by in categories: nuclear energy, particle physics

A cornerstone of the US fusion research program, the DIII-D National Fusion Facility, has accomplished a major achievement. The nuclear fusion facility has completed its 200,000th experimental cycle.

“While completing 200,000 shots is impressive in its own right, this achievement is far more than a mere number,” said Dr Richard Buttery, Director of the DIII-D National Fusion Facility.

Nuclear fusion has long been hailed as the “holy grail” of clean energy. It is the process of nuclear fusion itself that powers the sun and stars. Unlike nuclear fission, which splits atoms and generates radioactive waste, fusion involves combining lighter atoms to form heavier ones.

Oct 25, 2024

NASA sends a shutdown signal to Voyager 2: It has received it at 2 billion km

Posted by in categories: particle physics, space

Considering the future: What Voyager 2 has in store

According to Miller (2024), even though this instrument has been deactivated, engineers anticipate that Voyager 2 will have at least one operable instrument for exploration through the 2030s. The spacecraft continues to operate and transmit data. NASA is also hoping that the spacecraft continues to provide valid information about the interstellar medium too.

The seamless continuation of activities was made possible by the confirmation that the instrument was operating normally. In 2018, it was confirmed that Voyager 2 had crossed the heliosphere’s border and entered interstellar space thanks in large part to the plasma science instrument. Significant changes in atoms, particles, and magnetic fields that are detectable by the instruments of the Voyager probes define this barrier.

Oct 23, 2024

An Extraordinary Particle Could Travel Back in Time, Scientists Say

Posted by in category: particle physics

The hypothetical tachyon particle could potentially send messages backward in time if it exists.

Oct 23, 2024

Quantum entanglement speed is measured for the first time, and it’s too fast to comprehend

Posted by in categories: computing, particle physics, quantum physics

These scientists aren’t focused on the existence of quantum entanglement, but are keen on uncovering how it begins — how exactly do two particles become quantum entangled?

Using advanced computer simulations, they’ve managed to peek into processes that happen on attosecond timescales — a billionth of a billionth of a second.

Quantum entanglement is a strange and fascinating phenomenon where two particles become so interconnected that they share a single state.

Oct 23, 2024

Researchers At Large Hadron Collider Are Confident To Make Contact With Parallel Universe In Days

Posted by in categories: cosmology, particle physics

T he astoundingly complex LHC “atom smasher” at the CERN center in Geneva, Switzerland, are fired up to its maximum energy levels ever in an endeavor to identify — or perhaps generate — tiny black holes.

If successful a very new universe is going to be exposed – modifying completely not only the physics books but the philosophy books too.

Oct 23, 2024

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning

Posted by in categories: particle physics, robotics/AI

Kaiser, J., Xu, C., Eichler, A. et al. Sci Rep 14, 15,733 (2024). https://doi.org/10.1038/s41598-024-66263-y.

Download citation.

Oct 23, 2024

How fast is quantum entanglement? Scientists investigate it at the attosecond scale

Posted by in categories: particle physics, quantum physics

Quantum theory describes events that take place on extremely short time scales. In the past, such events were regarded as ‘momentary’ or ‘instantaneous’: An electron orbits the nucleus of an atom—in the next moment it is suddenly ripped out by a flash of light. Two particles collide—in the next moment they are suddenly ‘quantum entangled.’

Oct 22, 2024

A Route Toward the Island of Stability

Posted by in categories: chemistry, particle physics

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements.

How and where in the Universe are the chemical elements created? How can we explain their relative abundance? What is the maximum number of protons and neutrons that the nuclear force can bind in a single nucleus? Nuclear physicists and chemists expect to find answers to such questions by creating and studying new elements. But as elements get more and more massive, they become harder and harder to synthesize. The heaviest elements discovered so far were created by bombarding high-atomic-number (high-Z) actinide targets with beams of calcium-48 (48 Ca). This isotope is particularly suited to such experiments because of its peculiar nuclear configuration, in which the number of neutrons and protons are both “magic numbers.” Yet this approach could not produce elements beyond oganesson (proton number, Z = 118).

Oct 22, 2024

Measuring Particle Diffusion with the Countoscope

Posted by in categories: chemistry, particle physics

A new method for studying the behavior of multiparticle systems relies on a simple “head count” of particles in imaginary boxes.

One way to characterize the interactions in a bacterial colony or a polymer mixture is to trace the path of individual particles through the system, but such tracking can become difficult when the particles are indistinguishable. Researchers have developed a new method that extracts particle dynamics from a simple counting of particles in imaginary boxes of adjustable size [1]. They demonstrated this “countoscope” strategy in experiments with small plastic spheres moving around in a liquid. The measured rate of diffusion was different for different sized boxes, which revealed particle clumping. The countoscope’s ability to identify such collective behavior could one day help researchers understand the mechanisms that cause bacteria and other life forms to group together.

Biologists, chemists, and soft-matter physicists often study many-particle systems in which the particles shuffle around each other in a “random walk.” A useful measure of this behavior is the diffusion constant, which describes how fast an individual particle moves. A measurement of the diffusion constant can tell a biologist whether cells are healthy or sick, or it can tell a chemist how fast a molecule will move through a gel in a chemical-analysis device. The diffusion constant is typically determined by following the path of a single particle in a video recording. This trajectory reconstruction becomes difficult, however, when the particles are numerous and all look the same, says Sophie Marbach from Sorbonne University in France.

Page 10 of 590First7891011121314Last