Toggle light / dark theme

But what about nuclear? Are we at risk of cyber-induced meltdowns or releases of radiation?

No.

Fortunately, while the Russians may be able to disrupt electricity transmission in general, and electricity generation from many power plants like natural gas and wind farms, they can’t hack into nuclear power plant operations. Nuclear plants are still mostly analog and not connected to the Internet.

A relatively new method to control nuclear fusion that combines a massive jolt of electricity with strong magnetic fields and a powerful laser beam has achieved its own record output of neutrons—a key standard by which fusion efforts are judged—at Sandia National Laboratories’ Z pulsed power facility, the most powerful producer of X-rays on Earth.

The achievement, from a project called MagLIF, for magnetized liner inertial fusion, was reported in a paper published Oct. 9 in the journal Physical Review Letters.

“The output in neutrons in the past two years increased by more than an order of magnitude,” said Sandia physicist and lead investigator Matt Gomez. “We’re not only pleased that the improvements we implemented led to this increase in output, but that the increase was accurately predicted by theory.”

Seattle-based Ultra Safe Nuclear Technologies (USNC-Tech) has developed a concept for a new Nuclear Thermal Propulsion (NTP) engine and delivered it to NASA. Claimed to be safer and more reliable than previous NTP designs and with far greater efficiency than a chemical rocket, the concept could help realize the goal of using nuclear propulsion to revolutionize deep space travel, reducing Earth-Mars travel time to just three months.

Because chemical rockets are already near their theoretical limits and electric space propulsion systems have such low thrust, rocket engineers continue to seek ways to build more efficient, more powerful engines using some variant of nuclear energy. If properly designed, such nuclear rockets could have several times the efficiency of the chemical variety. The problem is to produce a nuclear reactor that is light enough and safe enough for use outside the Earth’s atmosphere – especially if the spacecraft is carrying a crew.

According to Dr. Michael Eades, principal engineer at USNC-Tech, the new concept engine is more reliable than previous NTP designs and can produce twice the specific impulse of a chemical rocket. Specific impulse is a measure of a rocket’s efficiency.

Will astronauts have fungi shields as protection against radiation in the future? 😃


When astronauts return to the moon or travel to Mars, how will they shield themselves against high levels of cosmic radiation? A recent experiment aboard the International Space Station suggests a surprising solution: a radiation-eating fungus, which could be used as a self-replicating shield against gamma radiation in space.

The fungus is called Cladosporium sphaerospermum, an extremophile species that thrives in high-radiation areas like the Chernobyl Nuclear Power Plant. For C. sphaerospermum, radiation isn’t a threat — it’s food. That’s because the fungus is able to convert gamma radiation into chemical energy through a process called radiosynthesis. (Think of it like photosynthesis, but swap out sunlight for radiation.)

The radiotrophic fungus performs radiosynthesis by using melanin — the same pigment that gives color to our skin, hair and eyes — to convert X- and gamma rays into chemical energy. Scientists don’t fully understand this process yet. But the study notes that it’s “believed that large amounts of melanin in the cell walls of these fungi mediate electron-transfer and thus allow for a net energy gain.”

Amanda Levete’s firm AL_A is partnering with Canadian energy company General Fusion to design a pioneering power plant that will use nuclear fusion.

The prototype plant will act as a demonstration facility for the technology, which uses hydrogen as fuel, with onsite facilities for experts and the general public to visit.

General Fusion wants to transform how the world is energised by replicating the process that powers the sun and the stars,” said AL_A.

Fusion power is the technology that is thirty years away, and always will be – according to skeptics at least. Despite its difficult transition into a reliable power source, the nuclear reactions that power the sun have a wide variety of uses in other fields. The most obvious is in weapons, where hydrogen bombs are to this day the most powerful weapons we have ever produced. But there’s another use case that is much less destructive and could prove much more interesting – space drives.

The concept fusion drive, called a direct fusion drive (or DFD) is in development at the Princeton Plasma Physics Laboratory (PPPL). Scientists and Engineers there, led by Dr. Samuel Cohen, are currently working on the second iteration of it, known as the Princeton field reversed configuration-2 (PFRC-2). Eventually the system’s developers hope to launch it into space to test, and eventually become the primary drive system of spacecraft traveling throughout our solar system. There’s already one particularly interesting target in the outer solar system that is similar to Earth in many ways – Titan. Its liquid cycles and potential to harbor life have fascinated scientists since they first started collecting data on it.