Menu

Blog

Archive for the ‘nuclear energy’ category: Page 63

Mar 20, 2021

Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas

Posted by in categories: computing, information science, nuclear energy, particle physics

In this work, we carry out KS-MD simulations for a range of elements, temperatures, and densities, allowing for a systematic comparison of three RPP models. While multiple RPP models can be selected, 7–11 7. J. Vorberger and D. Gericke, “Effective ion–ion potentials in warm dense matter,” High Energy Density Phys. 9, 178 (2013). https://doi.org/10.1016/j.hedp.2012.12.009 8. Y. Hou, J. Dai, D. Kang, W. Ma, and J. Yuan, “Equations of state and transport properties of mixtures in the warm dense regime,” Phys. Plasmas 22, 022711 (2015). https://doi.org/10.1063/1.4913424 9. K. Wünsch, J. Vorberger, and D. Gericke, “Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations,” Phys. Rev. E 79, 010201 (2009). https://doi.org/10.1103/PhysRevE.79.010201 10. L. Stanton and M. Murillo, “Unified description of linear screening in dense plasmas,” Phys. Rev. E 91, 033104 (2015). https://doi.org/10.1103/PhysRevE.91.033104 11. W. Wilson, L. Haggmark, and J. Biersack, “Calculations of nuclear stopping, ranges, and straggling in the low-energy region,” Phys. Rev. B 15, 2458 (1977). https://doi.org/10.1103/PhysRevB.15.2458 we choose to compare the widely used Yukawa potential, which accounts for screening by linearly perturbing around a uniform density in the long-wavelength (Thomas–Fermi) limit, a potential constructed from a neutral pseudo-atom (NPA) approach, 12–15 12. L. Harbour, M. Dharma-wardana, D. D. Klug, and L. J. Lewis, “Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium,” Phys. Rev. E 94, 053211 (2016). https://doi.org/10.1103/PhysRevE.94.053211 13. M. Dharma-wardana, “Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si,” Phys. Rev. E 86, 036407 (2012). https://doi.org/10.1103/PhysRevE.86.036407 14. F. Perrot and M. Dharma-Wardana, “Equation of state and transport properties of an interacting multispecies plasma: Application to a multiply ionized al plasma,” Phys. Rev. E 52, 5352 (1995). https://doi.org/10.1103/PhysRevE.52.5352 15. L. Harbour, G. Förster, M. Dharma-wardana, and L. J. Lewis, “Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum,” Phys. Rev. E 97, 043210 (2018). https://doi.org/10.1103/PhysRevE.97.043210 and the optimal force-matched RPP that is constructed directly from KS-MD simulation data.

Each of the models we chose impacts our physics understanding and has clear computational consequences. For example, success of the Yukawa model reveals the insensitivity to choices in the pseudopotential and screening function and allows for the largest-scale simulations. Large improvements are expected from the NPA model, which makes many fewer assumptions with a modest cost of pre-computing and tabulating forces. (See the Appendix for more details on the NPA model.) The force-matched RPP requires KS-MD data and is therefore the most expensive to produce, but it reveals the limitations of RPPs themselves since they are by definition the optimal RPP.

Using multiple metrics of comparison between RPP-MD and KS-MD including the relative force error, ion–ion equilibrium radial distribution function g (r), Einstein frequency, power spectrum, and the self-diffusion transport coefficient, the accuracy of each RPP model is analyzed. By simulating disparate elements, namely, an alkali metal, multiple transition metals, a halogen, a nonmetal, and a noble gas, we see that force-matched RPPs are valid for simulating dense plasmas at temperatures above fractions of an eV and beyond. We find that for all cases except for low temperature carbon, force-matched RPPs accurately describe the results obtained from KS-MD to within a few percent. By contrast, the Yukawa model appears to systematically fail at describing results from KS-MD at low temperatures for the conditions studied here validating the need for alternate models such as force-matching and NPA approaches at these conditions.

Mar 20, 2021

Real-time monitoring tool speeds up advanced nuclear reactor development

Posted by in category: nuclear energy

Across the nation, environmentally minded scientists and engineers are leading a new generation of nuclear reactor designs. They see nuclear power as a clean, carbon-free energy source along with hydropower, wind, and solar.

Mar 16, 2021

Magnetic Confinement of an Ultracold Neutral Plasma

Posted by in category: nuclear energy

O,.o imagine cold plasma fusion reactors: D.


Researchers have demonstrated that an ultracold neutral plasma can be magnetically confined, paving the way toward experiments that simulate its hot astrophysical counterparts.

Mar 5, 2021

Old Assumption Invalidated: Controlling Fusion Plasma and Plasma Turbulence

Posted by in categories: futurism, nuclear energy

After his PhD thesis invalidates an old assumption, Norman Cao wonders what’s next.

“What are some challenges in controlling plasma and what are your solutions? What is the most effective type of fusion device? What are some difficulties in sustaining fusion conditions? What are some obstacles to receiving fusion funding?”

For the past four years, graduate student Norman Cao ’15 PhD ’20 has been the Plasma Science and Fusion Center’s (PSFC’s) go-to “answer man,” replying to questions like these emailed by students and members of the general public interested in getting a deeper understanding of fusion and its potential as a future energy source.

Feb 28, 2021

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

Posted by in categories: nuclear energy, particle physics, robotics/AI, supercomputing

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply overnight, providing low-radioactivity, zero-carbon, high-yield power – but to date, it has proved extraordinarily challenging to stabilize. Now, scientists are leveraging supercomputing power from two national labs to help fine-tune elements of fusion reactor designs for test runs.

In experimental fusion reactors, magnetic, donut-shaped devices called “tokamaks” are used to keep the plasma contained: in a sort of high-stakes game of Operation, if the plasma touches the sides of the reactor, the reaction falters and the reactor itself could be severely damaged. Meanwhile, a divertor funnels excess heat from the vacuum.

In France, scientists are building the world’s largest fusion reactor: a 500-megawatt experiment called ITER that is scheduled to begin trial operation in 2025. The researchers here were interested in estimating ITER’s heat-load width: that is, the area along the divertor that can withstand extraordinarily hot particles repeatedly bombarding it.

Feb 24, 2021

Antimatter hydrogen has the same quantum quirk as normal hydrogen

Posted by in categories: nuclear energy, particle physics, quantum physics

O.,.o Could make a semi renewable fusion reactor or propulsion system.


Atoms of antihydrogen are affected by the Lamb shift, which results from transient particles appearing and disappearing.

Feb 24, 2021

For the first time, scientists detect the ghostly signal that reveals the engine of the universe

Posted by in categories: nuclear energy, particle physics

Circa 2020


Neutrinos from a long-theorized nuclear fusion reaction in the sun have been definitively observed, confirming the process that powers many stars.

Feb 23, 2021

This Fuel Is About to Power the World’s Biggest Fusion Reactor

Posted by in categories: economics, nuclear energy, sustainability

Whoever manages it first, we are on the cusp of a new age sparked by fusion giving more than it gets (producing more energy than it uses), then miniaturization for practical use and mass manufacture. That would essentially mean that we have access to an infinite, cheap, safe, and clean energy source. No more coal. No more nuclear waste. Massively less global warming. Even better, given the fact that the world runs on an energy economy built around energy scarcity, we will essentially become a post-scarcity civilization. And THAT my friends is a permanent, impossible to overstate game changer. For EVERYTHING and EVERYONE — FOREVER.


But first, scientists need to see if it’s ready.

Feb 23, 2021

Scientists Now Testing Fuel for Giant New Fusion Reactor

Posted by in category: nuclear energy

British engineers are preparing to test the fuel mix that could one day power the largest nuclear fusion experiment in the world, as Nature reports.

Feb 15, 2021

Scientists Use Lithium To Control Heat In Nuclear Fusion Reactors

Posted by in categories: nuclear energy, particle physics

Researchers unlocked the electronic properties of graphene by folding the material like origami paper.


Researchers at the US Department of Energy’s Princeton Plasma Physics Laboratory have created a plan using liquid lithium to control the extreme heat that could strike the exhaust system inside tokamak fusion reactors.

Continue reading “Scientists Use Lithium To Control Heat In Nuclear Fusion Reactors” »

Page 63 of 121First6061626364656667Last