Menu

Blog

Archive for the ‘nuclear energy’ category: Page 38

Jan 18, 2023

StrictlyVC in conversation with Sam Altman, part two (OpenAI)

Posted by in categories: nuclear energy, robotics/AI

OpenAI cofounder and CEO Sam Altman sat down for a wide-ranging interview with us late last week, answering questions about some of his most ambitious personal investments, as well as about the future of OpenAI.

This second clip is focused exclusively on artificial intelligence, including how much of what OpenAI is developing Altman thinks should be regulated, whether he’s worried about the commodification of AI, his thoughts about Alphabet’s reluctance to release its own powerful AI, and worst-and best-case scenarios as we move toward a future where AI is ever-more central to our lives.

Continue reading “StrictlyVC in conversation with Sam Altman, part two (OpenAI)” »

Jan 18, 2023

New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days

Posted by in categories: bioengineering, military, nuclear energy, space

We live in an era of renewed space exploration, where multiple agencies are planning to send astronauts to the Moon in the coming years. This will be followed in the next decade with crewed missions to Mars by NASA and China, who may be joined by other nations before long. These and other missions that will take astronauts beyond Low Earth Orbit (LEO) and the Earth-Moon system require new technologies, ranging from life support and radiation shielding to power and propulsion. And when it comes to the latter, Nuclear Thermal and Nuclear Electric Propulsion (NTP/NEP) is a top contender!

NASA and the Soviet space program spent decades researching nuclear propulsion during the Space Race. A few years ago, NASA reignited its nuclear program for the purpose of developing bimodal nuclear propulsion – a two-part system consisting of an NTP and NEP element – that could enable transits to Mars in 100 days. As part of the NASA Innovative Advanced Concepts (NIAC) program for 2023, NASA selected a nuclear concept for Phase I development. This new class of bimodal nuclear propulsion system uses a “wave rotor topping cycle” and could reduce transit times to Mars to just 45 days.

Continue reading “New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days” »

Jan 18, 2023

Copenhagen Atomics submits molten salt SMR design

Posted by in categories: business, nuclear energy, security

UK Atomics, a subsidiary of the company applied to the UK Department for Business, Energy and Industrial Strategy (BEIS) for a GDA by the Office for Nuclear Regulation (ONR) and the Environment Agency (EA). This assessment aims to assess the safety, security, and environmental protection aspects of any nuclear power plant design that is intended to be deployed in the UK.

In May 2021, BEIS opened the GDA process to advanced nuclear technologies, including small modular reactors (SMRs). Successful completion of the GDA culminates in the issue of a Design Acceptance Confirmation from the ONR and a Statement of Design Acceptability from the EA. Rolls-Royce SMR was the first vendor to submit an application for a GDA of an SMR design. Its 470 MWe pressurised water reactor design was accepted for review in March 2022. In December, GE Hitachi Nuclear Energy submitted a GDA entry application for its BWRX-300 SMR, and Holtec International has stated its intention to submit an application for its SMR-160 design.

UK Atomics molten salt reactor design uses unpressurised heavy water as a moderator, while the reactor is intended to burn nuclear waste while breeding new fuel from thorium. The company says, with an output of 100 MWt, it is small enough to allow for mass manufacturing and assembly line production.

Jan 14, 2023

LLNL constructing high-power laser for new experimental facility at SLAC

Posted by in categories: nuclear energy, physics

Lawrence Livermore National Laboratory’s decades of leadership in developing high-energy lasers is being tapped to provide a key component of a major upgrade to SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS).

Over the next several years, LLNL’s Advanced Photon Technologies (APT) program will design and construct one of the world’s most powerful petawatt (quadrillion-watt) laser systems for installation in an upgraded Matter in Extreme Conditions (MEC) experimental facility at LCLS, funded by the Department of Energy’s Office of Science-Fusion Energy Sciences program.

The new laser will pair with the LCLS X-ray free-electron laser (XFEL) to advance the understanding of high-energy density (HED) physics, plasma physics, fusion energy, laser-plasma interactions, astrophysics, planetary science and other physical phenomena.

Jan 13, 2023

Fukushima nuclear disaster: Japan to release radioactive water into sea this year

Posted by in categories: nuclear energy, particle physics

Japan says it will release more than a million tonnes of water into the sea from the destroyed Fukushima nuclear power plant this year.

After treatment the levels of most radioactive particles meet the national standard, the operator said.

The International Atomic Energy Agency (IAEA) says the proposal is safe, but neighbouring countries have voiced concern.

Continue reading “Fukushima nuclear disaster: Japan to release radioactive water into sea this year” »

Jan 11, 2023

Explaining Anomalies in Reactor Antineutrinos

Posted by in categories: nuclear energy, particle physics

Several experiments have been set up outside nuclear reactors to record escaping antineutrinos. The data generally agrees with theory, but at certain energies, the antineutrino flux is 6–10% above or below predictions. These so-called reactor antineutrino anomalies have excited the neutrino community, as they could be signatures of a hypothetical sterile neutrino (see Viewpoint: Getting to the Bottom of an Antineutrino Anomaly). But a new analysis by Alain Letourneau from the French Atomic Energy Commission (CEA-Saclay) and colleagues has shown that the discrepancies may come from experimental biases in associated electron measurements [1].

The source of reactor antineutrinos is beta decay, which occurs in a wide variety of nuclei (more than 800 species in a typical fission reactor). To predict the antineutrino flux, researchers have typically used previously recorded data on electrons, which are also produced in the same beta decays. This traditional method takes the observed electron spectra from nuclei, such as uranium-235 and plutonium-239, and converts them into predicted antineutrino spectra. But Letourneau and colleagues have found reason to doubt the electron measurements.

The team calculated antineutrino spectra—as well as the corresponding electron spectra—using a fundamental theory of beta decay. This method works for some nuclei, but not all, so the researchers plugged the gaps using a phenomenological model. They were able to treat all 800-plus reactor beta decays, finding “bumps” in the antineutrino flux that agree with observations. Similar features are predicted for electron spectra, but they don’t show up in the data. The results suggest that an experimental bias in electron observations causes the reactor antineutrino anomalies. To confirm this hypothesis, the researchers call for new precision measurements of the fission electrons.

Jan 9, 2023

Validating the physics behind designed fusion experiment

Posted by in categories: nuclear energy, physics

Two and a half years ago, MIT entered into a research agreement with startup company Commonwealth Fusion Systems to develop a next-generation fusion research experiment, called SPARC, as a precursor to a practical, emissions-free power plant.

-Sept 2020


MIT researchers have published seven papers outlining details of the physics behind the ambitious SPARC fusion research experiment being developed by MIT and Commonwealth Fusion Systems.

Jan 6, 2023

Russian hackers reportedly targeted three U.S. nuclear research laboratories | English News | WION

Posted by in categories: cybercrime/malcode, internet, nuclear energy

A Russian hacking team known as Cold River targeted three nuclear research laboratories in the United States this past summer, according to internet records reviewed by Reuters and five cyber security experts.
#unitedstates #russia #wion.

About Channel:

Continue reading “Russian hackers reportedly targeted three U.S. nuclear research laboratories | English News | WION” »

Jan 4, 2023

Where Are All The Scientific Breakthroughs? Forget AI, Nuclear Fusion And mRNA Vaccines, Advances In Science And Tech Have Slowed, Major Study Says

Posted by in categories: biotech/medical, nuclear energy, robotics/AI, science

Despite surges in fields like AI, medicine and nuclear energy, major advances in science and technology are slowing and are fewer and farther between than decades ago, according to a study published in Nature.

The researchers analyzed some 45 million scientific papers and 3.9 million patents between 1945 and 2010, examining networks of citations to assess whether breakthroughs reinforced the status quo or disrupted existing knowledge and more dramatically pushed science and technology off into new directions.

Across all major scientific and technological fields, these big disruptions—the discovery of the double helix structure of DNA, which rendered earlier research obsolete, is a good example of such research—have become less common since 1945, the researchers found.

Jan 3, 2023

The Universe Is More in Our Hands Than Ever Before

Posted by in categories: alien life, nuclear energy, particle physics

Pity the poor astronomer. Biologists can hold examples of life in their hands. Geologists can fill specimen cabinets with rocks. Even physicists get to probe subatomic particles in laboratories built here on Earth. But across its millennia-long history, astronomy has always been a science of separation. No astronomer has stood on the shores of an alien exoplanet orbiting a distant star or viewed an interstellar nebula up close. Other than a few captured light waves crossing the great void, astronomers have never had intimate access to the environments that spur their passion.

Until recently, that is. At the turn of the 21st century, astrophysicists opened a new and unexpected era for themselves: large-scale laboratory experimentation. High-powered machines, in particular some very large lasers, have provided ways to re-create the cosmos, allowing scientists like myself to explore some of the universe’s most dramatic environments in contained, controlled settings. Researchers have learned to explode mini supernovas in their labs, reproduce environments around newborn stars, and even probe the hearts of massive and potentially habitable exoplanets.

How we got here is one of the great stories of science and synergy. The emergence of this new large-scale lab-based astrophysics was an unanticipated side effect of a much broader, more fraught, and now quite in-the-news scientific journey: the quest for nuclear fusion. As humanity has worked to capture the energy of the stars, we’ve also found a way to bring the stars down to Earth.

Page 38 of 135First3536373839404142Last