Toggle light / dark theme

A commercial ‘artificial sun’ has achieved its first plasma discharge, the developer says © Getty Images / mesh cube.

The Chinese privately run fusion company Energy Singularity has built the world’s first fully high-temperature superconducting tokamak, and used it to produce plasma, state media outlets have reported, citing the firm.

The creation of the device, dubbed HH70 and located in Shanghai, is seen as a major step in the development of fusion technology to potentially generate clean energy.

Why are neutrinos so light?


Did you know that every second more than 100 trillion tiny particles called neutrinos pass through your body without causing any harm? These mysterious particles are produced abundantly throughout the universe in events like nuclear reactions in the sun, radioactive decays in the Earth’s crust, and in high-energy collisions in space. In particular, these subatomic particles play a crucial role in the explosive deaths of stars known as supernovae, where they act as the driving force behind the explosion. Despite their abundance in the universe, they are incredibly difficult to detect directly in experiments since they pass right through any matter and only interact extremely rarely. At the LHC, their existence can only be inferred indirectly by summing up the energy of all other particles produced from the proton collisions and looking for missing energy that has been carried away by the neutrino, which escaped the experiment undetected.

Neutrinos are a type of fundamental particle known as a lepton and they are electrically neutral. They stand out among fundamental particles because of their peculiar characteristics. Not only do they interact exceptionally rarely, but they also possess a minuscule mass, approximately 500,000 times lighter than that of an electron. One possible explanation for the smallness of their mass is given by the “seesaw” mechanism. According to this theory, there exist additional new fundamental particles that are electrically neutral. The mechanism postulates that the masses of these new particles, known as “heavy neutral leptons” (HNLs), are mathematically linked to those of the normal neutrinos, like two sides of a seesaw. The theory also predicts that the HNLs will “mix” with their known cousins, neutrinos. This means that a neutrino, produced in an LHC collision, can change into an HNL, and the HNL can then decay back into known particles that the LHC experiments can detect!

The seesaw explanation for the neutrino mass is particularly attractive and various searches for HNLs have been performed at the LHC and by other experiments in the past (see an example where CMS muon detectors are exploited in such a search). The CMS Collaboration has recently published a new search that makes the assumption that the mixing between the HNLs and neutrinos is very small. In this special case, the HNL can be “long lived” and travel macroscopic distances away from the collision point before decaying. Experiments can then take advantage of the unusual signatures from these “displaced” particle decays when trying to find evidence for the existence of HNLs.

Big atoms demand big energy to construct. A new model of quantum interactions now suggests some of the lightest particles in the Universe might play a critical role in how at least some heavy elements form.

Physicists in the US have shown how subatomic ‘ghost’ particles known as neutrinos could force atomic nuclei into becoming new elements.

Not only would this be an entirely different method for building elements heavier than iron, it could also describe a long-hypothesized ‘in-between’ path that sits on the border between two known processes, nuclear fusion and nucleosynthesis.

Researchers at Oak Ridge National Laboratory used additive manufacturing to produce the first defect-free complex tungsten parts for use in extreme environments. The accomplishment could have positive implications for clean-energy technologies such as fusion energy.

Tungsten has the highest melting point of any metal, making it ideal for fusion reactors where plasma temperatures exceed 180 million degrees Fahrenheit. In comparison, the sun’s center is about 27 million degrees Fahrenheit.

In its pure form, tungsten is brittle at room temperature and easily shatters. To counter this, ORNL researchers developed an electron-beam 3D-printer to deposit tungsten, layer by layer, into precise three-dimensional shapes. This technology uses a magnetically directed stream of particles in a high-vacuum enclosure to melt and bind metal powder into a solid-metal object. The vacuum environment reduces foreign material contamination and residual stress formation.

Tokamaks are one of the most widely studied technologies in the global effort to achieve sustained nuclear fusion. Using intense magnetic fields, they confine superheated plasma within their doughnut-shaped interiors, allowing atomic nuclei to fuse together and release vast amounts of energy.

Chinese scientists have made a groundbreaking milestone in nuclear fusion. They have announced a major achievement in discovering an advanced magnetic field structure “for the first time in the world” using the Huanliu-3 (HL-3) tokamak, also known as China’s “artificial sun.”

The discovery is the result of the first round of international joint experiments conducted on the HL-3 tokamak, a project that opened to global collaboration at the end of 2023.

Four Russian warships including a nuclear submarine have reached Cuba, just 200 miles off the coast of Florida, ahead of a planned military exercise in the Atlantic. The fleet — made up of a frigate, a nuclear-powered submarine, an oil tanker and a rescue tug — arrived in Havana Bay on Wednesday, welcomed by a 21-cannon salute from Cuba. Dramatic images from the arrival show the ominous and massive vessels entering the bay as Cubans lined up on…

Bill Gates’ TerraPower broke ground yesterday on its Natrium nuclear reactor plant, making it the first advanced reactor project ever to start construction.

Once it comes online, the Natrium demonstration plant in Kemmerer, Wyoming, will be a fully functioning commercial power plant. According to Gates, founder and chairman of TerraPower, Natrium will “be the most advanced nuclear facility in the world, and it will be much safer and produce far less waste than conventional reactors.”

It’s being constructed near the retiring coal-fired Naughton power plant and is the world’s only coal-to-nuclear project under development. TerraPower, which will employ between 200 and 250 people at the Natrium facility, wants to hire the 110 former coal workers to tap into their transferrable skills.