Toggle light / dark theme

Hydrogen has been defined on numerous occasions as “the fuel of the future”. We have seen other alternatives, such as ammonia or even methanol (which you may remember meeting with us), but what if there was an even more powerful one? Hawking predicted decades ago that the most powerful one could exist, and now they have finally created it. This is the new engine that has everything to revolutionize the planet but would require a huge mobilization of resources to manufacture.

The idea of using thorium for fueling cars has created the immense interest from auto enthusiasts, as such cars may become a clean, efficient and almost inexhaustible energy source for transport in the future. Nevertheless, the prospects of this technology are not as simple as may be suggested by this example, and at the moment, this technology is still rather hypothetical.

A thorium-powered car engine concept is based on the use of the radioactive material known as thorium as fuel. In principle, this engine employed a tiny measure of thorium to release heat through nuclear fission, and the heat was further transformed into electricity to run the car.

Building a nuclear fusion reactor capable of providing green energy for homes and industry is the goal of many physicists around the world, but many roadblocks stand between our present and this green energy future. While some of those hurdles have been overcome, building robust materials capable of surviving the hellish conditions inside tokamaks is the next frontier.

As engineers construct next-generation fusion reactors, like the International Thermonuclear Experimental Reactor (ITER) in southern France, labs around the world are working on creating exotic materials capable of containing super-hot plasma while also generating electricity. One of those labs is MIT Energy Initiative (MITEI), which is dedicated to finding ways to make future reactors more robust and reliable.

The 2011 accident at the Fukushima-Daiichi plant in Japan inspired extensive research and analysis that elevated nuclear energy into a standard bearer for safety. It also inspired a number of studies at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. Scientists want to look more closely at nuclear fuel materials to better understand how they will behave at extremely high temperatures.

Scraps of DNA discarded by our neurons’ power units are being absorbed into our nuclear genome far more frequently than assumed, potentially putting our brains at greater risk of developing life-threatening conditions.

An investigation by a team of researchers led by Columbia University in the US has found individuals with higher numbers of nuclear mitochondrial insertions – or NUMTs (pronounced new-mites) – in their brain cells are more likely to die earlier than those with fewer DNA transfers.

Mitochondria serve as our cells’ batteries, churning out energy in a form of chemical currency that suits most of our body’s metabolic needs. Once a discrete microbial organism in its own right, these tiny powerhouses were co-opted by our unicellular ancestors billions of years in the past, genes and all.

Startup Deep Fission has come up with a new way to deal with the economic and safety problems of nuclear power that is, to say the least, novel. The idea is to build a reactor that’s under 30 inches (76 cm) wide and stick it down a mile-deep (1.6-km) drill shaft.

With its promise of limitless energy by breaking down matter itself, nuclear power has long held a utopian promise for humanity. However, economic and safety considerations, along with political opposition, have hindered its development – especially in the very countries that developed the technology.

The safety and economic factors are related because the high cost of building nuclear power stations has very little to do with the nuclear technology itself. Nuclear fuel, even with all the processing costs included, only comes to about US$1,663 per kilogram (2.2 lb). Because nuclear fuel has such an incredible energy density, that’s about 0.46 ¢/kWh – and the fuel costs keep dropping as the technology becomes more efficient.