Toggle light / dark theme

Fungi That ‘Eat’ Radiation Are Growing on the Walls of Chernobyl’s Ruined Nuclear Reactor

Back in 1991, scientists were amazed when they made the discovery…

In the eerie environment inside the abandoned Chernobyl Nuclear Power Plant, researchers remotely piloting robots spotted pitch black fungi growing on the walls of the decimated No. 4 nuclear reactor and even apparently breaking down radioactive graphite from the core itself. What’s more, the fungi seemed to be growing towards sources of radiation, as if the microbes were attracted to them!

More than a decade later, University of Saskatchewan Professor Ekaterina Dadachova (then at the Albert Einstein College of Medicine in New York) and her colleagues acquired some of the fungi and found that they grew faster in the presence of radiation compared to other fungi. The three species tested, Cladosporium sphaerospermum, Cryptococcus neoformans and Wangiella dermatitidis, all had large amounts of the pigment melanin, which is found – among many places – in the skin of humans. People with a darker skin tone have much more of it. Melanin is known to absorb light and dissipate ultraviolet radiation, but in the fungi, it seemed to also be absorbing radiation and converting it into chemical energy for growth, perhaps in a similar fashion to how plants utilize the green pigment chlorophyll to attain energy from photosynthesis.

Scientists develop a concept of a hybrid thorium reactor

Russian scientists have proposed a concept of a thorium hybrid reactor in that obtains additional neutrons using high-temperature plasma held in a long magnetic trap. This project was applied in close collaboration between Tomsk Polytechnic University, All-Russian Scientific Research Institute Of Technical Physics (VNIITF), and Budker Institute of Nuclear Physics of SB RAS. The proposed thorium hybrid reactor is distinguished from today’s nuclear reactors by moderate power, relatively compact size, high operational safety, and a low level of radioactive waste.

“At the initial stage, we get relatively cold using special plasma guns. We retain the amount by deuterium gas injection. The injected neutral beams with particle energy of 100 keV into this plasma generate the high-energy deuterium and tritium ions and maintain the required temperature. Colliding with each other, deuterium and tritium ions are combined into a helium nucleus so high-energy neutrons are released. These neutrons can freely pass through the walls of the vacuum chamber, where the plasma is held by a magnetic field, and entering the area with nuclear fuel. After slowing down, they support the fission of heavy nuclei, which serves as the main source of energy released in the hybrid ,” says professor Andrei Arzhannikov, a chief researcher of Budker Institute of Nuclear Physics of SB RAS.

The main advantage of a hybrid nuclear fusion reactor is the simultaneous use of the fission reaction of heavy nuclei and synthesis of light ones. It minimizes the disadvantages of applying these nuclear reactions separately.

Switzerland switches off nuclear plant as it begins exit from atomic power

Switzerland-switches-off-nuclear-plant-as-it-begins-exit-from-atomic-power.


MUEHLEBERG, Switzerland (Reuters) — Switzerland’s Muehleberg nuclear power station went off the grid on Friday after 47 years, marking the end of an era as the shutdown starts the country’s exit from atomic power.

5 Big Ideas for Making Fusion Power a Reality

After decades of not happening, fusion power finally appears to be maybe possibly happening.


The joke has been around almost as long as the dream: Nuclear fusion energy is 30 years away…and always will be. But now, more than 80 years after Australian physicist Mark Oliphant first observed deuterium atoms fusing and releasing dollops of energy, it may finally be time to update the punch line.

Over the past several years, more than two dozen research groups—impressively staffed and well-funded startups, university programs, and corporate projects—have achieved eye-opening advances in controlled nuclear fusion. They’re building fusion reactors based on radically different designs that challenge the two mainstream approaches, which use either a huge, doughnut-shaped magnetic vessel called a tokamak or enormously powerful lasers.

What’s more, some of these groups are predicting significant fusion milestones within the next five years, including reaching the breakeven point at which the energy produced surpasses the energy used to spark the reaction. That’s shockingly soon, considering that the mainstream projects pursuing the conventional tokamak and laser-based approaches have been laboring for decades and spent billions of dollars without achieving breakeven.

Helium-3 mining on the lunar surface

The idea of harvesting a clean and efficient form of energy from the Moon has stimulated science fiction and fact in recent decades. Unlike Earth, which is protected by its magnetic field, the Moon has been bombarded with large quantities of Helium-3 by the solar wind. It is thought that this isotope could provide safer nuclear energy in a fusion reactor, since it is not radioactive and would not produce dangerous waste products.

The Apollo programme’s own geologist, Harrison Schmidt, has repeatedly made the argument for Helium-3 mining, whilst Gerald Kulcinski at the University of Wisconsin-Madison is another leading proponent. He has created a small reactor at the Fusion Technology Institute, but so far it has not been possible to create the helium fusion reaction with a net power output.

This has not stopped the search for Helium-3 from being a motivating factor in space exploration, however. Apart from the traditional space-faring nations, the India has previously indicated its interest in mining the lunar surface. The use of Moon resources was also part of Newt Gingrich’s unsuccessful candidacy for the Republican party’s nomination for the US presidency in 2012.

Navy Files Patent for Compact Fusion Reactor

Essentially beyond this is a higgs boson reactor essentially a universe of power in a jar.


Scientists have longed to create the perfect energy source. Ideally, that source would eventually replace greenhouse gas-spewing fossil fuels, power cars, boats, and planes, and send spacecraft to remote parts of the universe. So far, nuclear fusion energy has seemed like the most likely option to help us reach those goals.

‘Radiation-eating’ Fungi Finding Could Trigger Recalculation Of Earth’s Energy Balance And Help Feed Astronauts

Scientists have long assumed that fungi exist mainly to decompose matter into chemicals that other organisms can then use. But researchers at the Albert Einstein College of Medicine of Yeshiva University have found evidence that fungi possess a previously undiscovered talent with profound implications: the ability to use radioactivity as an energy source for making food and spurring their growth.

“The fungal kingdom comprises more species than any other plant or animal kingdom, so finding that they’re making food in addition to breaking it down means that Earth’s energetics—in particular, the amount of radiation energy being converted to biological energy—may need to be recalculated,” says Dr. Arturo Casadevall, chair of microbiology & immunology at Einstein and senior author of the study, published May 23 in PLoS ONE.

The ability of fungi to live off radiation could also prove useful to people: “Since ionizing radiation is prevalent in outer space, astronauts might be able to rely on fungi as an inexhaustible food source on long missions or for colonizing other planets,” says Dr. Ekaterina Dadachova, associate professor of nuclear medicine and microbiology & immunology at Einstein and lead author of the study.

Using relativistic effects for laser fusion: A new approach for clean power

A team of researchers at Osaka University has investigated a new method for generating nuclear fusion power, showing that the relativistic effect of ultra-intense laser light improves upon current “fast ignition” methods in laser-fusion research to heat the fuel long enough to generate electrical power. These findings could provide a spark for laser fusion, ushering in a new era of carbonless energy production.

Current nuclear power uses the fission of heavy isotopes, such as uranium, into lighter elements to produce power. Yet, this fission power has major concerns, such as spent fuel disposal and the risk of meltdowns. A promising alternative to fission is . Like all stars, our sun is powered by the of light isotopes, notably hydrogen, into heavier elements. Fusion has many advantages over fission, including the lack of hazardous waste or risk of uncontrolled nuclear reactions.

However, getting more energy out of a fusion reaction than was put into it has remained an elusive goal. This is because hydrogen nuclei strongly repel each other, and fusion requires and pressure conditions—like those found in the interior of the sun, for instance—to squeeze them together. One method, called “inertial confinement” uses extremely high-energy laser pulses to heat and compress a fuel pellet before it gets the chance to be blown apart. Unfortunately, this technique requires extremely precise control of the laser’s energy so that the compression shock waves all arrive at the center simultaneously.

/* */