Menu

Blog

Archive for the ‘nuclear energy’ category: Page 118

Jun 8, 2018

Milestone claimed as experimental nuclear reactor reaches temperature of the Sun

Posted by in category: nuclear energy

One of the possible pathways to limitless and clean energy can be found in hollow, doughnut-shaped chambers known as tokamak nuclear fusion reactors. A relatively new player on the scene, a UK company called Tokamak Energy, is claiming a new milestone in the area after heating its ST40 device to 15 million degrees Celsius, similar to temperatures found at the center of the Sun.

Read more

Jun 1, 2018

Prototype nuclear battery packs 10 times more power

Posted by in categories: biotech/medical, nuclear energy, robotics/AI, space travel

Russian researchers from the Moscow Institute of Physics and Technology (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology MISIS have optimized the design of a nuclear battery generating power from the beta decay of nickel-63, a radioactive isotope. Their new battery prototype packs about 3,300 milliwatt-hours of energy per gram, which is more than in any other nuclear battery based on nickel-63, and 10 times more than the specific energy of commercial chemical cells. The paperwas published in the journal Diamond and Related Materials.

Conventional batteries

Ordinary batteries powering clocks, flashlights, toys, and other compact autonomous electrical devices use the energy of so-called redox chemical reactions. In them, electrons are transferred from one electrode to another via an electrolyte. This gives rise to a potential difference between the electrodes. If the two battery terminals are then connected by a conductor, electrons start flowing to remove the potential difference, generating an electric current. Chemical batteries, also known as galvanic cells, are characterized by a high power density — that is, the ratio between the power of the generated current and the volume of the battery. However, chemical cells discharge in a relatively short time, limiting their applications in autonomous devices. Some of these batteries, called accumulators, are rechargeable, but even they need to be replaced for charging. This may be dangerous, as in the case of a cardiac pacemaker, or even impossible, if the battery is powering a spacecraft.

Read more

May 18, 2018

Ghostly ‘Lightning’ Waves Discovered Inside a Nuclear Reactor

Posted by in categories: climatology, nuclear energy

Weird waves that whisper through the ionosphere have also been discovered inside the plasma of nuclear fusion reactors. They could help stop runaway electrons.

Read more

May 4, 2018

A Nuclear Reactor for Space Missions Passes Final Major Ground Tests

Posted by in categories: nuclear energy, space

Nuclear power in space is still being pursued for future deep space missions…


A nuclear power plant that could provide power for long-duration crewed missions has passed another developmental milestone at NASA.

Read more

May 3, 2018

NASA successfully tested KRUSTY, a nuclear reactor that works in space and could power missions to the Moon or Mars

Posted by in categories: habitats, nuclear energy, space travel

If space is an ocean, the International Space Station is a raft tethered to the shore. The moon is a nearby island that we’ve visited briefly. To go any further or stay any longer, humanity needs more power.

Now, NASA may have the source: A tiny nuclear reactor called KRUSTY, for Kilopower Reactor Using Stirling Technology. (If you’re wondering if this is may be a reference to a popular animated series, its predecessor was known as DUFF).

The reactor uses nuclear fission—the energy released by splitting uranium-235 in a reactor core about the size of a paper towel— to produce 10 kilowatts of power for about ten years, which NASA says is enough energy to power several houses. Four of the reactors could power an outpost on the lunar surface.

Continue reading “NASA successfully tested KRUSTY, a nuclear reactor that works in space and could power missions to the Moon or Mars” »

May 3, 2018

Eliminating small instabilities in tokamaks before they become disruptions

Posted by in categories: nuclear energy, particle physics

One of the greatest obstacles to producing energy via fusion on Eearth is the formation and growth of small magnetic field imperfections in the core of experimental fusion reactors. These reactors, called tokamaks, confine hot ionized gas, or plasma. If the imperfections persist, they let the energy stored in the confined plasma leak out; if allowed to grow, they can lead to sudden termination of the plasma discharge. Recent simulations of tokamak discharges with fast, energetic ions have shown that the structure of the magnetic field can either stabilize or destabilize these magnetic imperfections, or “tearing” instabilities. The result depends on the helical structure of the field as it winds around the tokamak.

Energetic ions, ubiquitous in plasmas, can be a strong stabilizing or destabilizing force. The choice depends on the magnetic shear in the . Understanding the physics driving the onset of the instabilities can lead to their avoidance, a “zero tolerance” approach, vital for ITER’s stable operation. ITER is a key step between today’s fusion research and tomorrow’s fusion power plants. Also, the results explain many experimental observations of tearing instabilities that limit the maximum heat energy that can be contained.

Advanced tokamaks achieve high-thermal-energy plasmas by injecting beams of hot ions that collide with, and thereby heat, the background plasma. Burning plasma experiments that create energy from fusion reactions, such as ITER, will also have a significant population of hot alpha particles, the byproduct of fusion. The effects that have on the benign instabilities, such as the sawtooth instability, which causes the temperature near the plasma core to flatten, and the toroidal Alfvén eigenmode, which intuitively is a “vibration” (wobble) of the lines, have been known for some time.

Continue reading “Eliminating small instabilities in tokamaks before they become disruptions” »

May 1, 2018

Russia Has Launched a Floating Nuclear Power Plant Critics Are Calling “Nuclear Titanic”

Posted by in category: nuclear energy

What could go wrong?


If the world is going to end, why not have it be for a ridiculous, insane reason?

Like, say, building nuclear power plants on top of a barge and sending it floating up to the Arctic?

Continue reading “Russia Has Launched a Floating Nuclear Power Plant Critics Are Calling ‘Nuclear Titanic’” »

Apr 30, 2018

Seaborg Technologies secure funding for thorium-based molten salt reactors

Posted by in categories: innovation, nuclear energy

A Danish company is aiming to build smaller, safe nuclear reactors based on thorium and molten salt, after securing funding in its first pre-seed investment round.

Copenhagen-based Seaborg Technologies, which is developing thorium-based Molten Salt Reactors (MSRs), has received funding from an investment coalition led by Danish innovation incubator PreSeed Ventures.

The company hopes the funding will accelerate development of its CUBE (Compact Used fuel BurnEr) reactor concept.

Read more

Apr 26, 2018

Balancing nuclear and renewable energy

Posted by in categories: economics, nuclear energy, solar power, sustainability

Nuclear power plants typically run either at full capacity or not at all. Yet the plants have the technical ability to adjust to the changing demand for power and thus better accommodate sources of renewable energy such as wind or solar power.

Researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the Massachusetts Institute of Technology recently explored the benefits of doing just that. If nuclear generated in a more flexible manner, the researchers say, the plants could lower electricity costs for consumers, enable the use of more , improve the economics of nuclear and help reduce greenhouse gas emissions.

The team explored technical constraints on flexible operations at and introduced a new way to model how those challenges affect how power systems operate. “Flexible nuclear power operations are a ‘win-win-win,’ lowering power system operating costs, increasing revenues for nuclear plant owners and significantly reducing curtailment of renewable energy,” wrote the team in an Applied Energy article published online on April 24.

Read more

Apr 13, 2018

What is relativity? Einstein’s mind-bending theory explained

Posted by in categories: information science, nuclear energy

Albert Einstein is famous for his theory of relativity, and GPS navigation and nuclear energy would be impossible without the equation e=mc2.

Read more