Toggle light / dark theme

Groove is in the brain: Music supercharges brain stimulation

Music affects us so deeply that it can essentially take control of our brain waves and get our bodies moving. Now, neuroscientists at Stanford’s Wu Tsai Neurosciences Institute are taking advantage of music’s power to synchronize brain waves to boost the effectiveness of a technique called transcranial magnetic stimulation (TMS), a promising tool for both basic brain research and treating neuropsychiatric disorders.

Specifically, institute affiliate Jessica Ross and colleagues used TMS pulses to induce movements in people’s hands—a common testing ground for new ideas in the field. By carefully timing those pulses to music, the team found they could double the impact of TMS.

“Because there’s this really strong connection to movement, music can engage motor pathways in the brain. If you’re listening to a certain kind of rhythm, there are going to be very specific times at which your brain is most ready for the TMS effect,” said Ross, an instructor in the Department of Psychiatry and Behavioral Sciences at Stanford Medicine.

A more precise CRISPR platform enables large-scale gene screening in live mouse brains

Over the past few decades, biomedical researchers and neuroscientists have devised increasingly advanced techniques to study and alter neurophysiological processes. These include CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), a sophisticated tool to edit specific genes in some animals, including mice, rats, zebrafish and fruit flies.

Researchers at University of California, San Francisco led by Martin Kampmann recently introduced a more precise CRISPR screening platform that can be applied directly in living tissue, enabling the screening of a larger number of genes at once. The new technique, called CRISPR screening by AAV episome sequencing (CrAAVe-seq), was introduced in a paper published in Nature Neuroscience.

“Human cell-based systems are valuable but cannot fully capture the complexity of the brain,” Biswa Ramani, co-first author of the paper, told Medical Xpress. “Mice often remain the most effective model for many because their brains preserve the diversity and organization of cell types that cannot be replicated in a dish.”

Novel gene therapy for hereditary hearing loss developed at Tel Aviv University

Scientists from the Gray Faculty of Medical & Health Sciences at Tel Aviv University introduced an innovative gene therapy method to treat impairments in hearing and balance caused by inner ear dysfunction. According to the researchers, “This treatment constitutes an improvement over existing strategies, demonstrating enhanced efficiency and holds promise for treating a wide range of mutations that cause hearing loss.”

The study was led by Prof. Karen Avraham, Dean of the Gray Faculty of Medical & Health Sciences, and Roni Hahn, a PhD student from the Department of Human Molecular Genetics and Biochemistry. The study was conducted in collaboration with Prof. Jeffrey Holt and Dr. Gwenaëlle Géléoc from Boston Children’s Hospital and Harvard Medical School and was supported by the US-Israel Binational Science Foundation (BSF), the National Institutes of Health/NIDCD and the Israel Science Foundation Breakthrough Research Program. The study was featured on the cover of the journal EMBO Molecular Medicine.

Prof. Avraham explains: “The inner ear consists of two highly coordinated systems: the auditory system, which detects, processes, and transmits sound signals to the brain, and the vestibular system, which enables spatial orientation and balance. A wide range of genetic variants in DNA can affect the function of these systems, leading to sensorineural hearing loss and balance problems. Indeed, hearing loss is the most common sensory impairment worldwide, with over half of congenital cases caused by genetic factors. In this study, we aimed to investigate an effective gene therapy for these cases using an approach that has not been applied in this context before.”

Beyond BMI: Analysis links fat distribution to distinct brain aging patterns

Research led by The Hong Kong Polytechnic University finds that regional fat distribution exerts distinct effects on brain structure, connectivity and cognition, revealing patterns not explained by body mass index (BMI).

Obesity has been associated with structural and functional changes in the brain, including reductions in , disruptions in white matter and impaired connectivity, which have been associated with cognitive decline.

Previous studies frequently used BMI as the central measure of obesity, a highly generalized metric that cannot capture the biological differences in fat depots. Adipose tissue in different body regions is known to affect metabolic and inflammatory pathways differently, and earlier work has suggested that visceral (around organs in the ) and leg fat contribute unequally to disease risk.

Drinking any amount of alcohol likely increases dementia risk

Drinking any amount of alcohol likely increases the risk of dementia, suggests the largest combined observational and genetic study to date, published in BMJ Evidence-Based Medicine.

Even light drinking—generally thought to be protective, based on observational studies—is unlikely to lower the risk, which rises in tandem with the quantity of alcohol consumed, the research indicates.

Current thinking suggests that there might be an “optimal dose” of alcohol for brain health, but most of these studies have focused on and/or didn’t differentiate between former and lifelong non-drinkers, complicating efforts to infer causality, note the researchers.

Through multiplexed theta waves, brain’s place cells navigate using both external and internal cues

Place cells are specialized neurons in a brain region known as the hippocampus, which have been found to fire when animals are in specific locations. These cells don’t fire randomly, but their activity is known to be organized by theta oscillations, which in rats means that they fire in sync with rhythmic brain waves between 7–9 Hz.

While many past studies have explored the role and firing patterns of place cells, the extent to which their activity is influenced by different types of spatial cues has not yet been fully elucidated. Spatial cues are essentially pieces of information that help animals and humans to determine where they are and where they should head toward to reach a desired location.

Researchers at Johns Hopkins University gathered new experimental evidence suggesting that the multiplexed theta phase coding of place cells, or, in other words, their ability to tackle different tasks in the same “wave” of theta rhythm activity, is controlled by external (i.e., allothetic) and self-motion-related (i.e., idiothetic) spatial cues.

People’s neural responses while watching videos predict whether they will become friends in the future, study finds

Throughout the course of their lives, people typically encounter numerous other individuals with different interests, values and backgrounds. However, not all these individuals will become their good friends, life partners, or meaningful people in their lives.

Many past psychology and behavioral science studies investigated the relationships between different people and what contributes to their perceived affinity to others. While some of these studies linked friendship to physical proximity, interpersonal similarities and other factors, the associated with between people have not yet been fully elucidated.

Researchers at University of California Los Angeles (UCLA) and Dartmouth College recently carried out a study exploring the possibility that people who end up becoming friends exhibit similar neural activity patterns. Their findings, published in Nature Human Behavior, suggest that people are in fact drawn to others who exhibit similar emotional and mental responses to their surroundings.

/* */