Toggle light / dark theme

Protein shapes could indicate Parkinson’s disease

ETH Zurich researchers have found that a set of proteins have different shapes in the spinal fluid of healthy individuals and Parkinson’s patients. These could be used in the future as a new type of biomarker for this disease.

Many human diseases can be detected and diagnosed using biomarkers in blood or other . Parkinson’s disease is different: to date, there is no such being used in the clinicto indicate this neurodegenerative disease.

A team led by ETH Zurich Professor Paola Picotti could now help to close this gap. In a study just published in the journal Nature Structural and Molecular Biology, the researchers present 76 proteins that might serve as biomarkers for the detection of Parkinson’s disease.

Study explores how emotions elicited

Some neuroscience studies suggest that distinct human emotional states are associated with greater activity in different regions of the brain. For instance, while some parts of the brain have been associated with all emotional responses, the hypothalamus has often been linked to sexual responses and feelings of intimacy, the hippocampus to the retrieval of emotion-eliciting memories, and the amygdala to fear and anger.

Humans can experience emotional responses to an extremely wide range of sensory and environmental stimuli, including the food they consume. So far, however, relatively few studies have explored the link between emotional states elicited by different food flavors and activity in different parts the (i.e., the part of the brain responsible for higher cognitive processes).

Researchers at Niigata University, Hyogo College of Medicine, Meiji University, the Sakagami Dental Clinic and Otemae Junior College have recently carried out a study investigating the elicited by differently flavored chewing gums and the cortical activity associated with these responses. Their findings, published in Frontiers in Neuroscience, highlight the potential role of the left prefrontal cortex in eliciting emotional states during the consumption of palatable (i.e., pleasant-tasting) or less flavorful foods.

A key enzyme in brain function shuts off randomly, study reveals

The finding could have implications on drug development beyond neuroscience.

A new study conducted by researchers at the University of Copenhagen has found that V-ATPase, an enzyme thought to be a key component of brain function, switches off randomly, even for hours at a time. This discovery has the potential to change our understanding of how our brain functions, according to a press release.

V-ATPase is an enzyme that can break down ATP molecules, the cell’s energy currency, as they pump protons across cellular membranes.


Evgenil Kovalev/iStock.

Simply put, the enzyme is responsible for providing energy to fill up the membrane bladders between neighboring neurons with chemicals that are needed to transfer a message between them. Therefore, the enzyme is quite crucial for neuronal communication, or that’s what researchers have thought so far.

FDA just approved the world’s most expensive drug that costs $3.5 million

It could actually be cheaper than other treatment options.

The U.S. Food and Drug Administration (FDA) recently approved a new drug Hemgenix, to be used in patients with hemophilia B, a blood clotting disorder. Since the condition is rare, it will be used only in a small group of patients worldwide.


Motortion/iStock.

Since Hemophilia patients lack enough clotting factor, so they are at risk of complications of prolonged bleeding that can also affect joints, internal organs, and the brain, an FDA document said. Treatment for such individuals constitutes intravenous infusions of clotting Factor IX to prevent bleeding episodes, which must be conducted over the patient’s lifetime.

Dynamic molecular switches with hysteretic negative differential conductance emulating synaptic behaviour

To realize electronic operations beyond the von Neumann bottleneck, a new type of switch that can mimic self-learning is needed. Here, the authors demonstrate all-in-one-place logic and memory operations based on dynamic molecular switch that can emulate brain-like synaptic and Pavlovian response, bringing the field a step closer to molecular-scale hardware.

Study sheds new light on the link between oral bacteria and diseases

Researchers at Karolinska Institutet in Sweden have identified the bacteria most commonly found in severe oral infections. Few such studies have been done before, and the team now hopes that the study can provide deeper insight into the association between oral bacteria and other diseases. The study is published in Microbiology Spectrum.

Previous studies have demonstrated clear links between and , such as cancer, , diabetes and Alzheimer’s disease. However, there have been few identifying which occur in infected oral-and maxillofacial regions. Researchers at Karolinska Institutet have now analyzed samples collected between 2010 and 2020 at the Karolinska University Hospital in Sweden from patients with severe oral infections and produced a list of the most common bacteria.

This was a collaborative study that was performed by Professor Margaret Sällberg Chen and adjunct Professor Volkan Özenci’s research groups.