Toggle light / dark theme

Divergent landscapes of A-to-I editing in postmortem and living human brain

Adenosine-to-inosine editing is a form of RNA modification observed in the human brain transcriptome. Here the authors question the accuracy of utilizing postmortem samples to reflect the RNA biology of living brains. This is due to significant differences in adenosine-to-inosine editing between living and postmortem brain tissues, with most sites exhibiting higher editing levels postmortem.

Chinese neural probe could be ‘transformative’ advance for brain-computer links

The probe also achieved stable neural recordings in rat brains for up to two years, showing excellent biocompatibility and long-term recording stability, state news agency Xinhua reported.

Cheng Heping, with the Chinese Academy of Sciences and director of the National Centre for Biomedical Imaging Science at Peking University, told Xinhua that the achievement provided a powerful tool for high-throughput simultaneous monitoring of activity in multiple brain regions, and for exploring the relationships between neural activity and behaviour.

Study reveals significant differences in RNA editing between postmortem and living human brain

Researchers from the Icahn School of Medicine at Mount Sinai have shed valuable light on the nuanced functions and intricate regulatory methods of RNA editing, a critical mechanism underlying brain development and disease.

In a study published June 26 in Nature Communications, the team reported finding major differences between postmortem and living prefrontal cortex brain tissues as they relate to one of the most abundant RNA modifications in the brain, known as adenosine-to-inosine (A-to-I) editing.

This discovery will play a significant role in shaping the development of diagnostics and therapies for .

Researchers find brains can tune their navigation system without landmarks

Johns Hopkins research sheds new light on how mammals track their position and orientation while moving, revealing that visual motion cues alone allow the brain to adjust and recalibrate its internal map even in the absence of stable visual landmarks.

Their results are published in Nature Neuroscience.

“When you move through space, you have a lot of competing telling you where you are and how fast you are going, and your brain has to make sense of that,” said study co-leader Noah Cowan, professor of mechanical engineering at the Whiting School of Engineering and director of the Locomotion in Mechanical and Biological Systems (LIMBS) Laboratory.

The Secret to Resiliency: It’s in Your Gut and Brain

A UCLA Health study explored the traits of resilient individuals, discovering significant neural activities in the brain regions for cognition and emotional regulation, and healthy gut microbiome activities.

The research highlighted differences in microbiome metabolites and gene activity, indicating lower inflammation and better gut health in resilient people compared to less resilient individuals. This comprehensive approach may lead to interventions that enhance resilience to stress, possibly preventing various health issues.

Resilience and Health.

Reasons for Panpsychism

Some thoughts/speculations on panpsychism.


I have long suspected that panpsychism represents the most likely explanation of how consciousness works. My evidence for this claim is laid out below. That said, I am not an expert in philosophy of mind, so take this with a grain of salt. I am certainly open to constructive critiques, questions, and discussion as well!

How Do Our Memories Last a Lifetime? New Study Offers a Biological Explanation

Whether it’s a first-time visit to a zoo or when we learned to ride a bicycle, we have memories from our childhoods kept well into adult years. But what explains how these memories last nearly an entire lifetime?

A new study in the journal Science Advances, conducted by a team of international researchers, has uncovered a biological explanation for long-term memories. It centers on the discovery of the role of a molecule, KIBRA, that serves as a “glue” to other molecules, thereby solidifying memory formation.

“Previous efforts to understand how molecules store long-term memory focused on the individual actions of single molecules,” explains André Fenton, a professor of neural science at New York University and one of the study’s principal investigators. “Our study shows how they work together to ensure perpetual memory storage.”

Researchers develop tiny, cost-effective Ti laser that fits on a chip

Stanford’s new tiny, cheap laser:


Researchers have achieved a potentially groundbreaking innovation in laser technology by developing a titanium-sapphire (Ti: sapphire) laser on a chip. This new prototype is dramatically smaller, more efficient, and less expensive than its predecessors, marking a significant leap forward with a technology that has broad applications in industry, medicine, and beyond.

Ti: sapphire lasers are known for their unmatched performance in quantum optics, spectroscopy, and neuroscience due to their wide gain bandwidth and ultrafast light pulses. However, their bulky size and high cost have limited their widespread adoption. Traditional Ti: sapphire lasers occupy cubic feet in volume and can cost hundreds of thousands of dollars, in addition to requiring high-powered lasers costing $30,000 each to feed it the energy it needs to operate.