Toggle light / dark theme

Researchers pioneer fluid-based laser scanning for brain imaging

When Darwin Quiroz first started working with optics as an undergraduate, he was developing atomic magnetometers. That experience sparked a growing curiosity about how light interacts with matter, an interest that has now led him to a new technique in optical imaging.

Quiroz, a Ph.D. student in the Department of Electrical, Computer and Energy Engineering at the University of Colorado Boulder, is co-first author of a new study that demonstrates how a fluid-based known as an electrowetting prism can be used to steer lasers at high speeds for advanced imaging applications.

The work, published in Optics Express, conducted along with mechanical engineering Ph.D. graduate Eduardo Miscles and Mo Zohrabi, senior research associate, opens the door to new technologies in microscopy, LiDAR, optical communications and even brain imaging.

Acoustically activatable liposomes as a translational nanotechnology for site-targeted drug delivery and noninvasive neuromodulation

Purohit et al. incorporate sucrose into drug-loaded lipid nanoparticle (LNP) formulations, which shifts the acoustic impedance in a way that triggers drug release upon exposure to focused ultrasound (FUS). By using FUS to both transiently open the blood-brain-barrier and to release drugs from their LNPs, various drugs were delivered into the brains of mice.


Acoustically activatable nanocarriers made by incorporating 5% sucrose into liposomes release drug with low-intensity ultrasound, providing a readily clinically translatable system for both central and peripheral noninvasive neuromodulation.

Bioreducible Gene Delivery Platform that Promotes Intracellular Payload Release and Widespread Brain DispersionClick to copy article linkArticle link copied!

We here introduce a novel bioreducible polymer-based gene delivery platform enabling widespread transgene expression in multiple brain regions with therapeutic relevance following intracranial convection-enhanced delivery. Our bioreducible nanoparticles provide markedly enhanced gene delivery efficacy in vitro and in vivo compared to nonbiodegradable nanoparticles primarily due to the ability to release gene payloads preferentially inside cells. Remarkably, our platform exhibits competitive gene delivery efficacy in a neuron-rich brain region compared to a viral vector under previous and current clinical investigations with demonstrated positive outcomes. Thus, our platform may serve as an attractive alternative for the intracranial gene therapy of neurological disorders.

Why our brain agrees on what we see: New study reveals shared neural structure behind common perceptions

How is it that we all see the world in a similar way? Imagine sitting with a friend in a café, both of you looking at a phone screen displaying a dog running along the beach. Although each of our brains is a world unto itself, made up of billions of neurons with completely different connections and unique activity patterns, you would both describe it as: “A dog on the beach.” How can two such different brains lead to the same perception of the world?

A joint research team from Reichman University and the Weizmann Institute of Science investigated how people with differently wired brains can still perceive the world in strikingly similar ways. Every image we see and every sound we hear is encoded in the brain through the activation of tiny processing units called that are ten times smaller than a human hair. The human brain contains 85 billion interconnecting neurons that enable us to experience the world, think, and respond to it.

The question that has intrigued brain researchers for years is how this encoding is performed, and how it is possible for two people to have completely different neural codes, yet, end up with similar perceptions?

SCP-239: The Child Who Can Rewrite Reality | The Science and Ethics of a Sleeping God

Can a child’s imagination alter the laws of physics? In this speculative science essay, we explore SCP-239, “The Witch Child” — a sleeping eight-year-old whose mind can reshape matter, rewrite probability, and collapse reality itself.

We examine how the SCP Foundation’s containment procedures—from telekill alloys to induced comas—reflect humanity’s struggle to contain a consciousness powerful enough to bend the universe. Through philosophy, ethics, and quantum speculation, this essay asks:
What happens when belief becomes a force of nature?

🎓 About the Series.
This video is part of our Speculative Science series, where we analyze anomalous phenomena through physics, cognitive science, and ethics.

📅 New speculative science videos every weekday at 6 PM PST / 9 PM EST.
🔔 Subscribe and turn on notifications to stay at the edge of what’s possible.

💬 Share your theories in the comments below:
Should SCP-239 remain asleep forever, or does humanity have a moral duty to understand her?

#SCP239 #SpeculativeScience #TheWitchChild #SCPFoundation #ScienceFiction #Philosophy #AIExplained #Ethics #SciFiEssay #LoreExplained

Large Genetic Study Links Cannabis Use to Psychiatric, Cognitive and Physical Health

“Cannabis is widely used, but its long-term effects on health remain poorly characterized,” said Sandra Sanchez-Roige, Ph.D., associate professor of psychiatry at UC San Diego School of Medicine and senior author of the study. The researchers were also interested in the relationship between genetics and traits that contribute to the development of cannabis use disorder, which can interfere with a person’s daily life.

“While most people who try cannabis do not go on to develop cannabis use disorder, some studies estimate that nearly 30% will,” said Sanchez-Roige. “Understanding the genetics of early-stage behaviors may help clarify who is at greater risk, opening the door to prevention and intervention strategies.”

The research team conducted a genome-wide association study (GWAS) analyzing relationships between cannabis use and genetic data provided by 131,895 23andMe research participants. They answered survey questions about whether or not they had ever used cannabis, and those who answered yes were also asked how frequently they used the drug.

“We’ve known for decades that genetic factors influence whether or not people will try drugs, how frequently they use those drugs, and the risk that they will become addicted to them,” said Abraham A. Palmer, Ph.D., professor and vice chair for basic research in the department of psychiatry at UC San Diego School of Medicine and co-author of the study. “Genetic tools like GWAS help us identify the molecular systems that connect cannabis use to brain function and behavior.”

“ — —


New research has found genetic associations between cannabis use and psychiatric, cognitive, and physical health. The findings could inform prevention and treatment strategies for cannabis use disorders.

Mathematical model could help boost drug efficacy by getting dosing in rhythm with circadian clocks

Researchers at the University of Michigan have developed a mathematical model that reveals how our circadian rhythms can have dramatic impacts on how our bodies interact with medicines.

This could help doctors prescribe medicines to have the best intended effect by syncing the dosing up with the natural clocks of their patients.

“These findings provide a mechanistic basis for chronotherapeutics—optimizing drug efficacy by considering circadian timing,” said the new study’s author Tianyong Yao, an undergraduate researcher in the U-M Department of Mathematics. “This could improve treatment for conditions such as ADHD, depression and fatigue.”

/* */