Toggle light / dark theme

Optimizing ADHD treatment: Revealing key components of cognitive–behavioral therapy

Attention-deficit hyperactivity disorder (ADHD) is a well-known neurodevelopmental disorder that affects the brain’s ability to regulate attention and control impulses. It poses many challenges to those affected, typically making it difficult for them to sustain focus, follow through with instructions, and maintain a calm and restful state.

As one of the most common neurodevelopmental disorders, ADHD impacts individuals throughout their lives, creating a breadth of social, emotional, academic, and workplace challenges.

Despite its high prevalence and decades of research, currently available drugs for ADHD are not able to completely resolve the core symptoms of the disorder in most cases.

ADHD can be diagnosed by looking at brainwaves. Here’s the neuroscience behind it

Children with attention deficit hyperactivity disorder (ADHD) do not have a behavioral disorder, nor are they lazy, or lacking in manners and boundaries. Their brains mature in a different way, with different patterns of neurological activity and a number of neurochemical differences. For this reason, ADHD is considered to be a neurodevelopmental disorder.

These neurological imbalances manifest as attention difficulties, disorganization, or hyperactivity and impulsivity. While these are most noticeable in childhood, where prevalence is estimated at 5%, ADHD can persist into adulthood, where prevalence is 2.5% of the population. ADHD can therefore have social, academic and occupational impacts throughout a person’s life.

Although there are risk factors (such as mothers smoking during pregnancy or ), these have not been shown to directly cause ADHD. Genetic factors play a more significant role, as 74% of cases are hereditary.

New study finds that both stimulant and non-stimulant medications improve cognition in ADHD

I take Adderall.


Attention Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders and can persist into adulthood in the majority of cases. ADHD is associated with deficits in cognitive functions, in particular executive functions such as motor and interference inhibition, sustained attention, working memory, timing, psychomotor speed, reaction time variability and switching.

This is the first meta-analysis paper of chronic medication effects on cognition in ADHD, looking at attention, inhibition, reaction time and working memory. All of these aspects can affect academic performance in school, and occupational performance in adults.

The research is published in the journal Neuroscience & Biobehavioral Reviews.

Dopamine Drives Aggression Learning in Males

Summry: New research reveals that dopamine plays a crucial role in teaching young male mice to fight, with the chemical’s influence diminishing as they gain experience. In novice fighters, boosting dopamine increased aggression, while blocking it stopped them from fighting.

However, experienced fighters showed no changes in behavior regardless of dopamine manipulation, highlighting the role of experience in shaping aggression. The study identifies the lateral septum as a key brain region for “aggression learning” in males, but no similar effect was observed in females.

Organoid intelligence: training lab-grown mini-brains to learn and compute with AI

Recent research demonstrates that brain organoids can indeed “learn” and perform tasks, thanks to AI-driven training techniques inspired by neuroscience and machine learning. AI technologies are essential here, as they decode complex neural data from the organoids, allowing scientists to observe how they adjust their cellular networks in response to stimuli. These AI algorithms also control the feedback signals, creating a biofeedback loop that allows the organoids to adapt and even demonstrate short-term memory (Bai et al. 2024).

One technique central to AI-integrated organoid computing is reservoir computing, a model traditionally used in silicon-based computing. In an open-loop setup, AI algorithms interact with organoids as they serve as the “reservoir,” for processing input signals and dynamically adjusting their responses. By interpreting these responses, researchers can classify, predict, and understand how organoids adapt to specific inputs, suggesting the potential for simple computational processing within a biological substrate (Kagan et al. 2023; Aaser et al. n.d.).

Some bacteria in the mouth may play a role in memory loss and dementia

As people age, their memory and thinking skills naturally decline. Approximately 15% of older adults experience mild cognitive impairment, a major risk factor for dementia and other forms of dementia such as Alzheimer’s disease.

Since cognitive decline and dementia are growing public health concerns, scientists are working to better understand the risk factors and find ways to reduce them. One emerging area of research suggests that oral health may play a role in brain health.

Now, a new study suggests that the bacteria living in the mouth may influence cognitive function as people age, with some harmful bacteria possibly contributing to the development of dementia and Alzheimer’s disease.

Could Light Therapy Be the Key to Easing Alzheimer’s Symptoms?

Light therapy is emerging as a promising, non-pharmacological treatment for Alzheimer’s.

Alzheimer’s disease is a progressive neurological disorder that primarily affects older adults, leading to memory loss, cognitive decline, and behavioral changes. It is the most common cause of dementia. The disease is characterized by the buildup of amyloid plaques and tau tangles in the brain, which disrupt cell function and communication. There is currently no cure, and treatments focus on managing symptoms and improving quality of life.

How Your Brain’s Hidden Messaging System Powers Learning

This study highlights how neurons communicate over long distances within the brain, solving a mystery about how signals from distant synapses reach the nucleus to trigger gene expression.

Unlocking the Secrets of Brain Cell Communication

A new study published in the Journal of Neuroscience reveals how brain cells transmit vital signals from their outer branches to their nucleus, triggering the activation of genes essential for learning and memory.

/* */