Toggle light / dark theme

Gut Neurons Direct Immune Healing After Inflammation

Their previous work revealed that ILC2s are a major source of a tissue-healing growth factor called amphiregulin and have the capacity to receive neuronal signals that modulate their function and can impact disease progression and recovery.

In the new study, they demonstrated that the tissue-protective function of ILC2s depends on production of a molecule called adrenomedullin 2 (ADM2) from the enteric nervous system; administering the molecule expanded this group of ILC2s and provided therapeutic benefit in a preclinical model of inflammatory bowel disease, whereas loss of ADM2 signaling exacerbated disease due to the lack of these protective cells.

An alphabet for hand actions in the human brain

Using a corkscrew, writing a letter with a pen or unlocking a door by turning a key are actions that seem simple but actually require a complex orchestration of precise movements. So, how does the brain do it?

According to a new study, published in Proceedings of the National Academy of Sciences, by researchers from Carnegie Mellon University and the University of Coimbra, the has a specialized system that builds these actions in a surprisingly systematic way.

Analogous to how all of the words in a language can be created by recombining the letters of its alphabet, the full repertoire of human hand actions can be built out of a small number of basic building block movements.

Identifying a compass in the human brain

Zhengang Lu and Russell Epstein, from the University of Pennsylvania, led a study to explore how people maintain their sense of direction while navigating naturalistic, virtual reality cities.

As reported in their JNeurosci paper, the researchers collected neuroimaging data while 15 participants performed a taxi-driving task in a virtual reality city. Two represented a forward-facing direction as people moved around. This was consistent across variations of the city with different visual features.

The signal was also consistent across different phases of the task (i.e., picking up a passenger versus driving a passenger to their drop-off location) and various locations in the city. Additional analyses suggest that these brain regions represent a broad range of facing directions by keeping track of direction relative to the north–south axis of the environment.

How the brain follows an internal rhythm

“This suggests that theta-phase locking is a general phenomenon of the human memory system, but does not alone determine successful recall,” says the corresponding author.

While most nerve cells always fired at the same oscillation time, some nerve cells interestingly changed their preferred timing between learning and remembering. “This supports the theory that our brain can separate learning and retrieval processes within a brain wave, similar to members of an orchestra who start playing at different times in a piece of music,” says the author.


A research team has gained new insights into the brain processes involved in encoding and retrieving new memory content. The study is based on measurements of individual nerve cells in people with epilepsy and shows how they follow an internal rhythm. The work has now been published in the journal Nature Communications.

“Similar to members of an orchestra who follow a common beat, the activity of nerve cells appears to be linked to electrical oscillations in the brain, occurring one to ten times per second. The cells prefer to fire at specific times within these brain waves, a phenomenon known as theta-phase locking,” says the first author.

The research team found that the interaction between nerve cells and brain waves is active in both the learning and remembering of new information – specifically in the medial temporal lobe, a central area for human memory. However, in the study on spatial memory, the strength of theta-phase locking of nerve cells during memory formation was independent of whether the test subjects were later able to correctly recall the memory content.

One Fruit, 1600 Compounds, Countless Health Benefits

Fresh grapes contain a potent mix of over 1,600 compounds that benefit heart, brain, skin, and gut health. New evidence suggests they deserve official superfood recognition, with benefits even at the genetic level.

A new article appearing in the current issue of the peer-reviewed Journal of Agriculture and Food Chemistry explores the concept of “superfoods” and makes a case that fresh grapes have earned what should be a prominent position in the superfood family. The author, leading resveratrol and cancer researcher John M. Pezzuto, Ph.D., D.Sc., Dean of the College of Pharmacy and Health Sciences at Western New England University, brings forth an array of evidence to support his perspective on this issue.

As noted in the article, the term “superfood” is a common word without an official definition or established criteria. Mainstream superfoods are typically part of the Mediterranean Diet and generally rich in natural plant compounds that are beneficial to a person’s health. Pezzuto addresses the broader topic of superfoods in detail, then makes the scientific case for grapes, noting that fresh grapes are underplayed in this arena and often not included with mention of other similar foods, such as berries.

100x Larger Hydrogen-Rich Hydrothermal System Found Using Submersible

100x larger hydrogen-rich hydrothermal system beneath western Pacific seafloor discovered.


Researchers revealed that the Kunlun hydrothermal field—a tectonically active site roughly 80 kilometers west of the Mussau Trench on the Caroline Plate—comprises 20 large seafloor depressions (some exceeding one kilometer in diameter) clustered together like a pipe swarm, a group of vertical or steeply inclined cylindrical rock structures that funnel liquid or gas from Earth’s interior.

The total area is 11.1 square kilometers, i.e., over a hundred times larger than the Lost City, a unique deep-sea hydrothermal field located on the Atlantis Massif, a section of the Mid-Atlantic Ridge.

“The Kunlun system stands out for its exceptionally high hydrogen flux, scale, and unique geological setting,” said Prof. SUN Weidong, the study’s corresponding author. “It shows that serpentinization-driven hydrogen generation can occur far from mid-ocean ridges, challenging long-held assumptions.”

Neuroscientists Find That All Human Brains Are Connected through Extremely Low Frequency Electromagnetic Waves

For centuries, philosophers and scientists have speculated about the mysterious connections between human minds. Now, new research in neuroscience suggests that our brains may be linked in a very real, physical way — through extremely low frequency (ELF) electromagnetic waves.

Neuroscientists studying brain activity have found that the human brain not only generates its own electrical signals but also emits faint electromagnetic waves at extremely low frequencies. These ELF waves, which typically range from 1 to 30 Hertz, are so subtle that they were once thought to be biologically insignificant. However, recent experiments show that these signals can extend beyond the skull and interact with the electromagnetic environment around us.

What’s even more remarkable is that similar ELF patterns appear across different individuals, raising the possibility that brains can “tune in” to each other through this shared frequency spectrum.

FDA Approves Tonmya, First Fibromyalgia Medication in 15 Years

The US Food and Drug Administration (FDA) has approved Tonix Pharmaceuticals’ Tonmya (cyclobenzaprine HCl, formerly known as TNX-102 SL), a novel treatment form for fibromyalgia.1 The drug is now the first in a new category of non-opioid analgesics for fibromyalgia and the first new medication for this disorder in 15 years.

The FDA’s approval cited efficacy from 2 double-blind, randomized, placebo-controlled, phase 3 clinical trials of almost 1,000 patients that evaluated Tonmya as treatment for fibromyalgia. Across both phase 3 trials, Tonmya significantly reduced daily pain scores compared with placebo at the primary endpoint of 14 weeks. In these trials, a greater percentage of patients taking Tonmya experienced a clinically meaningful (≥30%) improvement in their pain after 3 months, as compared with placebo. Across phase 3 clinical trials with over 1,400 patients evaluated, Tonmya was generally well tolerated. The most common adverse events (incidence ≥2%) included oral hypoesthesia, oral discomfort, abnormal product taste, somnolence, oral paresthesia, oral pain, fatigue, dry mouth, and aphthous ulcer.


Psychiatric Times is the connection to Psychiatry and Mental Health, featuring clinical updates, expert views, and research news in multimedia formats.

/* */