Researchers have designed a particle accelerator with nanotubes smaller than a human hair.
Acoustic frequency filters, which convert electrical signals into miniaturized sound waves, separate the different frequency bands for mobile communications, Wi-Fi, and GPS in smartphones. Physicists at RPTU have now shown that such miniaturized sound waves can couple strongly with spin waves in yttrium iron garnet. This results in novel hybrid spin-sound waves in the gigahertz frequency range.
The use of such nanoscale hybrid spin-sound waves provides a pathway for agile frequency filters for the upcoming 6G mobile communications generation. The fundamental study by the RPTU researchers has been published in the journal Nature Communications.
Surface acoustic waves (SAWs) are ubiquitous. They unleash destructive power in the form of earthquake waves but are also at the heart of miniaturized frequency filters that are used billions of times for GHz-frequency mobile communication in smartphones.
Scientists have engineered a nanowire platform that mimics brain tissue to study astrocytes, the star-shaped cells critical for brain health, for the first time in their natural state.
Astrocytes are the brain’s most abundant and mysterious cells, responsible for regulating communication between neurons and helping to maintain the blood-brain barrier. They are also highly dynamic shape-shifters, something they do not do on typical petri dishes, leaving major gaps in our understanding of how they operate.
“Frustratingly, little is known about the stunning diversity of astrocyte morphology and we also don’t know much about the molecular machinery behind these shape shifts,” said co-senior author Ishan Barman, a Johns Hopkins University bioengineer. “They won’t take on these shapes on glass, so the question for us was how do we replicate the in vivo shape but in vitro?”
Life’s instructions are written in DNA, but it is the enzyme RNA polymerase II (Pol II) that reads the script, transcribing RNA in eukaryotic cells and eventually giving rise to proteins. Scientists know that Pol II must advance down the gene in perfect sync with other biological processes; aberrations in the movement of this enzyme have been linked to cancer and aging. But technical hurdles prevented them from precisely determining how this important molecular machine moves along DNA, and what governs its pauses and accelerations.
A new study fills in many of those knowledge gaps. In a paper published in Nature Structural & Molecular Biology, researchers used a single-molecule platform to watch individual mammalian transcription complexes in action. The result is a clear view of how this molecular engine accelerates, pauses, and shifts gears as it transcribes genetic information.
“What’s really striking is how this machine functions almost like a finely tuned automobile,” says Shixin Liu, head of the Laboratory of Nanoscale Biophysics and Biochemistry. “It has the equivalent of multiple gears, or speed modes, each controlled by the binding of different regulatory proteins. We figured out, for the first time, how each gear is controlled.”
Food quality and safety are crucial. However, conventional food-monitoring methods, including ribotyping and polymerase chain reaction, tend to be destructive and lengthy. These shortcomings limit their potential for broad applications. In this regard, surface-enhanced Raman scattering (SERS) sensing, with real-time, non-destructive, and high sensitivity capabilities, is a highly promising alternative.
In a new breakthrough, a team of researchers, led by Associate Professor Ji-Hwan Ha from the Department of Mechanical Engineering, Hanbat National University, Republic of Korea, has developed a two-in-one nanostructured SERS sensor integrated into a stretchable and antimicrobial wrapper (NSSAW) that not only monitors food directly on the surface but also actively preserves it.
Their novel findings are published in the journal Small.
Researchers have developed very light and extremely strong material that can withstand extreme heat. The material could be useful for aerospace and other high-performance industries.
Developed by researchers from University of Toronto Engineering, the material can withstand temperatures up to 932°F (500° C).
The new composite material is made of various metallic alloys and nanoscale precipitates, and has a structure that mimics that of reinforced concrete, but on a microscopic scale.
Consciousness is fundamental; only thereafter do time, space and matter arise. This is the starting point for a new theoretical model of the nature of reality, presented by Maria Strømme, Professor of Materials Science at Uppsala University, in AIP Advances. The article has been selected as the best paper of the issue and featured on the cover.
Strømme, who normally conducts research in nanotechnology, here takes a major leap from the smallest scales to the very largest—and proposes an entirely new theory of the origin of the universe. The article presents a framework in which consciousness is not viewed as a byproduct of brain activity, but as a fundamental field underlying everything we experience—matter, space, time, and life itself.
Researchers discovered a new way to independently tune a nanoparticle’s speed and direction using different strength electric fields.
The new method could lead to better drug delivery technologies.
Read more.
A new method using a combination of strong and weak electric fields to change nanoparticle speed and direction could improve drug delivery and purification systems.
Rapidly expanding advances in computational prediction capabilities have led to the identification of many potential materials that were previously unknown, including millions of solid-state compounds and hundreds of nanoparticles with complex compositions and morphologies. Autonomous workflows are being developed to accelerate experimental validation of these bulk and nanoscale materials through synthesis. For colloidal nanoparticles, such strategies have focused primarily on compositionally simple systems, due in part to limitations in the generalizability of chemical reactions and incompatibilities between automated setups and mainstream laboratory methods. As a result, the scope of theoretical versus synthesizable materials is rapidly diverging. Here, we use a simple automated platform to drive a massively generalizable reaction capable of producing more than 651 quadrillion distinct core@multishell nanoparticles using a single set of reaction conditions. As a strategic model system, we chose a family of seven isostructural layered rare earth (RE) oxychloride compounds, REOCl (RE = La, Ce, Pr, Nd, Sm, Gd, Dy), which are well-known 2D materials with composition-dependent optical, electronic, and catalytic properties. By integrating a computer-driven, hobbyist-level pump system with a laboratory-scale synthesis setup, we could grow up to 20 REOCl shells in any sequence on a REOCl nanoparticle core. Reagent injection sequences were programmed to introduce composition gradients, luminescent dopants, and binary through high-entropy solid solutions, which expands the library to a near-infinite scope. We also used ChatGPT to randomly select several core@multishell nanoparticle targets within predefined constraints and then direct the automated setup to synthesize them. This platform, which includes both massively generalizable nanochemical reactions and laboratory-scale automated synthesis, is poised for plug-and-play integration into autonomous materials discovery workflows to expand the translation of prediction to realization through efficient synthesis.