Menu

Blog

Archive for the ‘nanotechnology’ category: Page 109

Oct 14, 2022

Fluctuation relations for irreversible emergence of information

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

Information variations in a chain-like system are associated to energy transactions with the environment, which can take place reversibly or irreversibly, with a lower theoretical energy limit22,23. Fluctuations as a consequence of pure computations are on the order of the thermal level (i.e., similar to kT, being k the Boltzmann constant and T the absolute temperature), according to Landauer’s principle. Such energies are negligible at routine human scales but become significant when the size of the system is nanoscopic or smaller, because the work and heat it generates also compare with the thermal level. Small systems are based on nanostructures, including individual molecules and arrangements of atoms, such as biological and quantum systems.

Fluctuation theorems have appeared in recent years explaining quantitatively energy imbalances between forward and reverse pathways or between equilibrium and non-equilibrium processes24,25. They have been tested experimentally26,27,28, mostly in biomolecular systems analyzed on a one-by-one basis29. Most of these theorems establish relations among thermodynamic potentials for general systems, often with no specific insight into information theory. This theory, in turn, deals with spatially-indexed, 1-dimensional arrangements of symbols, which may not be necessarily associated to a time order. Recent generalizations separate the role of information and feedback control30,31, but still the interpretation of non-Markovianity, irreversibility and reversibility in terms of purely informational operations such as reading, writing and error correction32,33 remains obscured.

Here, we analyze energy exchanges associated to the symbolic management of a sequence of characters, without reference to the physical construction of the chain. Just by considering reversibility at the single sequence level and conservation laws, we next present two pairs of fluctuations equalities in the creation of information sequences, which use depends on energy exchange constraints. Our analysis integrates key information concepts, namely, reading, writing, proof reading and editing in the thermodynamic description of a string of symbols with information.

Oct 14, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron

Posted by in categories: energy, food, nanotechnology

If you often find yourself off by one when counting your socks after doing the laundry, you might want to sit down for this.

Scientists in Japan have now counted the number of extra—or missing— down to a precision of just one electron in single platinum nanoparticles having diameters only one-tenth those of common viruses.

This new process for precisely studying differences in net charge on metal nanoparticles will aid in the further understanding and development of catalysts for breaking down greenhouse and other harmful gases into fuels and benign gases or for efficiently producing ammonia needed for fertilizers used in agriculture.

Oct 13, 2022

Researchers Develop a CRISPR-Based Therapy That Penetrates Solid Tumors

Posted by in categories: biotech/medical, nanotechnology

By packaging lipid nanoparticles with elements that decrease the fibrous nature of solid tumors, researchers can deliver CRISPR therapies in a more efficient manner.

Oct 12, 2022

The ‘dense’ potential of nanostructured superconductors

Posted by in categories: biotech/medical, computing, nanotechnology

From superfast magnetic levitation trains and computer chips to magnetic resonance imaging (MRI) machines and particle accelerators, superconductors are electrifying various aspects of our life. Superconductivity is an interesting property that allows materials to transfer moving charges without any resistance, below a certain critical point. This implies that superconducting materials can transfer electrical energy in a highly efficient manner without loss in the form of heat, unlike many conventional conductors.

Almost two decades ago scientists discovered superconductivity in a —magnesium diboride, or MgB2. There has been a resurgence in the of popularity MgB2 due to its low cost, superior superconducting abilities, high critical current density (which means that compared to other materials, MgB2 remains a semiconductor even when larger amounts of electric current is passed through it), and trapped magnetic fields arising from strong pinning of the vortices—which are cylindrical current loops or tubes of magnetic flux that penetrate a superconductor.

The intermetallic MgB2 also allows adjustability of its properties. For instance, the critical current density values (Jc) of MgB2 can be improved by decreasing the grain size and increasing the number of grain boundaries. Such adjustability is not observed in conventional layered superconductors.

Oct 10, 2022

QT/ Future sparkles for diamond-based quantum technology

Posted by in categories: nanotechnology, quantum physics

“It’s akin to cutting holes or carving gullies in a super thin sheet of diamond, to ensure light travels and bounces in the desired direction,” he said.

To overcome the “etching” challenge, the researchers developed a new hard masking method, which uses a thin metallic tungsten layer to pattern the diamond nanostructure, enabling the creation of one-dimensional photonic crystal cavities.

Oct 10, 2022

Hugo de Garis & Ben Goerzel on the Singularity

Posted by in categories: media & arts, nanotechnology, singularity, space

Experimental video mashup on the Singularity featuring Ben Goertzel & Hugo de Garis.
Music by Scott Hanson (Tycho) — the actual song is Melanine form the album Dive.

Hugo de Garis
Ben Goertzel

Continue reading “Hugo de Garis & Ben Goerzel on the Singularity” »

Oct 9, 2022

Engineers create a computer with a water droplet processor

Posted by in categories: biotech/medical, computing, nanotechnology

Circa 2015 face_with_colon_three


From driving water wheels to turning turbines, waterhas been used as the prime mover of machinery and the powerhouse of industry for many centuries. In ancient times, the forces of flowing water were even harnessed to power the first rudimentaryclocks. Now, engineers at Stanford University have created the world’s first water-operated computer. Using magnetized particles flowing through a micro-miniature network ofchannels, the machine runs like clockwork and is claimed to be capable ofperforming complex logical operations.

Continue reading “Engineers create a computer with a water droplet processor” »

Oct 9, 2022

Liquid hard drive could store 1TB data in a tablespoon

Posted by in categories: computing, nanotechnology, particle physics

Circa 2014 face_with_colon_three


A liquid hard drive containing a suspension of nanoparticles could be used to store impressive amounts of data: 1 terabyte per tablespoon.

Researchers from the University of Michigan and New York University have been simulating wet information storage techniques which uses clusters of nanoparticles suspended in liquid. These clusters of particles can store more data than conventional computer bits which have just two storage states: 0 and 1. The clusters of particles work a bit like Rubik’s Cubes to reconfigure in different ways to represent different storage states. A 12-particle memory cluster connected to a central sphere can have almost eight million unique states, which is equivalent to 2.86 bytes of data.

Continue reading “Liquid hard drive could store 1TB data in a tablespoon” »

Oct 8, 2022

Neuromorphic memory device simulates neurons and synapses

Posted by in categories: biological, nanotechnology, robotics/AI

Researchers have reported a nano-sized neuromorphic memory device that emulates neurons and synapses simultaneously in a unit cell, another step toward completing the goal of neuromorphic computing designed to rigorously mimic the human brain with semiconductor devices.

Neuromorphic computing aims to realize (AI) by mimicking the mechanisms of neurons and that make up the . Inspired by the cognitive functions of the human brain that current computers cannot provide, neuromorphic devices have been widely investigated. However, current Complementary Metal-Oxide Semiconductor (CMOS)-based neuromorphic circuits simply connect artificial neurons and synapses without synergistic interactions, and the concomitant implementation of neurons and synapses still remains a challenge. To address these issues, a research team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering implemented the biological working mechanisms of humans by introducing the neuron-synapse interactions in a single memory cell, rather than the conventional approach of electrically connecting artificial neuronal and synaptic devices.

Similar to commercial graphics cards, the artificial synaptic devices previously studied often used to accelerate parallel computations, which shows clear differences from the operational mechanisms of the human brain. The research team implemented the synergistic interactions between neurons and synapses in the neuromorphic memory device, emulating the mechanisms of the biological neural network. In addition, the developed neuromorphic device can replace complex CMOS neuron circuits with a single device, providing high scalability and cost efficiency.

Oct 7, 2022

New form of silicon could revolutionize semiconductor industry

Posted by in categories: engineering, nanotechnology

After a 10-year research study that started by accident and was met with skepticism, a team of Northeastern University mechanical engineers was able to synthesize highly dense, ultra-narrow silicon nanowires that could revolutionize the semiconductor industry. Their research appears in Nature Communications.

Yung Joon Jung, Northeastern professor of mechanical and industrial engineering, says it might have been his favorite research project.

“Everything is new, and it required a lot of perseverance,” says Jung, who specializes in engineering and application of nanostructure systems and previously studied carbon nanotubes.