Toggle light / dark theme

New research may make future design of nanotechnology safer with fewer side effects

A new study, published in Nature Nanotechnology, may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

“Nanotechnology’s main advantage over conventional medical treatments is its ability to more precisely target tissues, such as targeted by chemotherapy. However, when nanoparticles are injected, they can activate part of the called complement,” said senior author Dmitri Simberg, Ph.D., professor of Nanomedicine and Nanosafety at the University of Colorado Skaggs School of Pharmacy on the University of Colorado Anschutz Medical Campus.

Complement is a group of proteins in the immune system that recognize and neutralize bacteria and viruses, including nanoparticles which are foreign to the body. As a result, nanoparticles are attacked by triggering side effects that include shortness of breath, elevated heart rate, fever, hypotension, and, in rare cases, anaphylactic shock.

Biocompatible focused ultrasound delivers cancer drugs on target

Remote control of chemical reactions in biological environments could enable a diverse range of medical applications. The ability to release chemotherapy drugs on target in the body, for example, could help bypass the damaging side effects associated with these toxic compounds. With this aim, researchers at California Institute of Technology (Caltech) have created an entirely new drug-delivery system that uses ultrasound to release diagnostic or therapeutic compounds precisely when and where they are needed.

The platform, developed in the labs of Maxwell Robb and Mikhail Shapiro, is based around force-sensitive molecules known as mechanophores that undergo chemical changes when subjected to physical force and release smaller cargo molecules. The mechanical stimulus can be provided via focused ultrasound (FUS), which penetrates deep into biological tissues and can be applied with submillimetre precision. Earlier studies on this method, however, required high acoustic intensities that cause heating and could damage nearby tissue.

To enable the use of lower – and safer – ultrasound intensities, the researchers turned to gas vesicles (GVs), air-filled protein nanostructures that can be used as ultrasound contrast agents. They hypothesized that the GVs could function as acousto-mechanical transducers to focus the ultrasound energy: when exposed to FUS, the GVs undergo cavitation with the resulting energy activating the mechanophore.

Chemistry Nobel Prize goes to quantum dots that guide surgeons

From LED lights to medical imaging, quantum dots have many varied applications.

The creation of quantum dots earned its developers the Nobel Prize in Chemistry 2023, an invention that could have also been a contender for the Physics Prize. These tiny elements of nanotechnology, which are so miniature that their size dictates their properties, are today used in many useful and practical applications and have even been reported to direct surgeons as they tackle tricky tumor tissue.


Nobel Prize/Twitter.

Governed by quantum phenomena.

Ray Kurzweil Wants To Put Nanobots In Our Bloodstream

Would you want to live forever? On this episode, Neil deGrasse Tyson and author, inventor, and futurist Ray Kurzweil discuss immortality, longevity escape velocity, the singularity, and the future of technology. What will life be like in 10 years?

Could we upload our brain to the cloud? We explore the merger of humans with machines and how we are already doing it. Could nanobots someday flow through our bloodstreams? Learn about the exponential growth of computation and what future computing power will look like.

When will computers pass the Turing test? Learn why the singularity is nearer and how to think exponentially about the world. Are things getting worse? We go through why things might not be as bad as they seem. What are the consequences of having a longer lifetime? Will we deplete resources?

Will there be a class divide between people able to access longer lifespans? What sort of jobs would people have in the future? Explore what artificial intelligence has in store for us. What happens if AI achieves consciousness? We discuss the definition of intelligence and whether there will be a day when there is nothing left for humans to do. Will we ever see this advancement ending?

Thanks to our Patrons Johan Svensson, Galen J., Kellen Bolander, Sunshine, and Brian White for supporting us this week.

NOTE: StarTalk+ Patrons can watch or listen to this entire episode commercial-free.

Using Nanoparticles to Treat Cancer

PhD candidate at UniSA’s Applied Chemistry and Translational Biomaterials (ACTB) Group, Cintya Dharmayanti, has taken out UniSA’s 2021 Three Minute Thesis (3MT) with a condensed presentation of her research about developing nanoparticles for cancer treatment, potentially leading to more effective treatments and reduced side effects. She will be competing in the 2023 FameLab National Finals with a presentation titled, “Behind enemy lines: Tiny assassins in the war against cancer.

For more from University of South Australia visit: https://www.unisa.edu.au/connect/alumni-network/alumni-news/…Track=true.

UniSA Homepage:
https://www.unisa.edu.au/

UniSA Facebook:
https://www.facebook.com/UniSA/
https://www.facebook.com/UniSANewsroom/

UniSA Twitter:

UniSA Instagram:

AI Designs Unique Walking Robot in Seconds

Summary: Pioneering artificial intelligence (AI) has astoundingly synthesized the design of a functional walking robot in a matter of seconds, illustrating a rapid-fire evolution in stark contrast to nature’s billion-year journey.

This AI, operational on a modest personal computer, crafts entirely innovative structures from scratch, distinguishing it from other AI models reliant on colossal data and high-power computing. The robot, emerging from a straightforward “design a walker” prompt, evolved from an immobile block to a bizarre, porously-holed, three-legged entity, capable of slow, steady locomotion.

Representing more than mere mechanical achievement, this AI-designed organism may mark a paradigm shift, offering a novel, unconstrained perspective on design, innovation, and potential applications in fields ranging from search-and-rescue to medical nanotechnology.

Nano-mechanoelectrical approach increases DNA detection sensitivity by 100 times

UMass Amherst researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.

“DNA detection is in the center of bioengineering,” says Jinglei Ping, lead author of the paper that appeared in Proceedings of the National Academy of Sciences.

Ping is an assistant professor of mechanical and , an adjunct assistant professor in and affiliated with the Center for Personalized Health Monitoring of the Institute for Applied Life Sciences. “Everyone wants to detect the DNA at a low concentration with a high sensitivity. And we just developed this method to improve the sensitivity by about 100 times with no cost.”

Mustafa Prize winner: Iran pioneer in nanotechnology, its medical advances amazing

An internationally-renowned Iranian scientist and this year’s winner of Iran’s prestigious Mustafa Prize for science and technology has hailed the country’s great advances in the fields of nanotechnology and medicine.

“Iran has always been far ahead in the field of nanotechnology,” Omid Farokhzad, who has won the prize for design, development, and clinical translation of novel polymeric nanomedicines used to treat various diseases, especially cancer, said on Monday.

Functional photoacoustic imaging: from nano- and micro- to macro-scale

In the biomedical field, optical characterization of cells and tissues is a valuable tool for understanding physiological mechanisms. Current biomedical optical imaging techniques include fluorescence imaging [1], confocal microscopy [2], optical coherence tomography [3], two-photon microscopy [4], near-infrared spectroscopy [5], and diffuse optical tomography [6]. These techniques have significantly advanced biomedical technology and are widely used for both preclinical and clinical purposes. However, the strong optical scattering within turbid biological tissues fundamentally limits the imaging depth of these pure optical imaging techniques to no deeper than the optical ballistic depth ( 1 mm). Thus, their observation depth is superficial and other imaging modalities are needed to explore deeper layers of biological tissue [7].

Photoacoustic imaging (PAI), a promising biomedical technique, achieves superior imaging depths by forming images from optically-derived acoustic signals, which inherently attenuate less than optical signals in biological tissue [8, 9, 10]. PAI is based on the photoacoustic (PA) effect, in which energy is converted from light to acoustic waves via thermoelastic expansion [11,12,13,14,15,16]. To generate PA waves, a laser beam with a typical pulse width of a few nanoseconds illuminates the target tissue. The optical chromophores in biological tissue absorb the light energy and then release the energy soon after. The energy release can can occur as either light energy with a slightly shifted wavelength or as thermal energy that causes thermoelastic expansion. In PAI, the rapidly alternating thermoelastic expansion and contraction caused by pulsed light illumination generates vibrations in tissue that propagate as acoustic waves called PA waves. The generated PA waves can be detected by conventional ultrasound (US) transducers for image generation. Because PAI and ultrasound imaging (USI) share the same signal reception and image reconstruction principle, the two modalities are technically fully compatible and can be implemented in a single US imaging platform accompanied with pulse laser source [17,18,19,20,21]. Since PAI can capture the photochemical properties of the target site, combining PAI with USI can provide both chemical and structural information about a target tissue.

One distinctive advantage of PAI is that its resolution and imaging depth can be adjusted to suit a specific target area. The resolution of PA signals depends on both the optical focus of the excitation laser and the acoustic focus of the receiving US transducer [22], so images with tuned spatial resolutions and imaging depths can be achieved by modifying the system configuration [23]. PAI’s wide applications to date have included nanoscale surface and organelle imaging [24,25,26,27,28], microscale cellular imaging [29,30,31,32], macroscale small animal imaging [33,34,35], and clinical human imaging [36,37,38].