Toggle light / dark theme

New LandFall spyware exploited Samsung zero-day via WhatsApp messages

A threat actor exploited a zero-day vulnerability in Samsung’s Android image processing library to deploy a previously unknown spyware called ‘LandFall’ using malicious images sent over WhatsApp.

The security issue was patched this year in April, but researchers found evidence that the LandFall operation was active since at least July 2024, and targeted select Samsung Galaxy users in the Middle East.

Identified as CVE-2025–21042, the zero-day is an out-of-bounds write in libimagecodec.quram.so and has a critical severity rating. A remote attacker successfully exploiting it can execute arbitrary code on a target device.

Mapping a new frontier with AI-integrated geographic information systems

Over the past 50 years, geographers have embraced each new technological shift in geographic information systems (GIS)—the technology that turns location data into maps and insights about how places and people interact—first the computer boom, then the rise of the internet and data-sharing capabilities with web-based GIS, and later the emergence of smartphone data and cloud-based GIS systems.

Now, another is transforming the field: the advent of artificial intelligence (AI) as an independent “agent” capable of performing GIS functions with minimal human oversight.

In a study published in Annals of GIS, a multi-institutional team led by geography researchers at Penn State built and tested four AI agents in order to introduce a conceptual framework of autonomous GIS and examine how this shift is redefining the practice of GIS.

Quantum ‘pinball’ state of matter in electrons allows both conducting and insulating properties, physicists discover

Electricity powers our lives, including our cars, phones, computers, and more, through the movement of electrons within a circuit. While we can’t see these electrons, electric currents moving through a conductor flow like water through a pipe to produce electricity.

Certain materials, however, allow that electron flow to “freeze” into crystallized shapes, triggering a transition in the state of matter that the electrons collectively form. This turns the material from a conductor to an insulator, stopping the flow of electrons and providing a unique window into their complex behavior. This phenomenon makes possible new technologies in quantum computing, advanced superconductivity for energy and medical imaging, lighting, and highly precise atomic clocks.

A team of Florida State University-based physicists, including National High Magnetic Field Laboratory Dirac Postdoctoral Fellow Aman Kumar, Associate Professor Hitesh Changlani and Assistant Professor Cyprian Lewandowski, have shown the conditions necessary to stabilize a phase of matter in which electrons exist in a solid crystalline lattice but can “melt” into a , known as a generalized Wigner crystal. Their work was published in npj Quantum Materials.

A computational camera lens that can focus on everything all at once

Imagine snapping a photo where every detail, near and far, is perfectly sharp—from the flower petal right in front of you to the distant trees on the horizon. For over a century, camera designers have dreamed of achieving that level of clarity.

In a breakthrough that could transform photography, microscopy, and even , researchers at Carnegie Mellon University have developed a new kind of lens that can bring an entire scene into sharp focus at once—no matter how far away or close different parts of the scene are.

The team, consisting of Yingsi Qin, an electrical and Ph.D. student, Aswin Sankaranarayanan, professor of electrical and computer engineering, and Matthew O’Toole, associate professor of computer science and robotics, recently presented their findings at the 2025 International Conference on Computer Vision and received a Best Paper Honorable Mention recognition.

Engineers achieve record 31% efficiency in red quantum LEDs for enhanced display color and brightness

A research team led by the School of Engineering of The Hong Kong University of Science and Technology (HKUST) has made significant advances in quantum rod light-emitting diodes (QR-LEDs), setting record-high efficiency level for red QR-LEDs. This innovation is poised to revolutionize next-generation display and lighting technologies, offering smartphone and television users a vibrant and enhanced visual experience. The research is published in the journal Advanced Materials.

LEDs have been widely used in for decades. Recent developments in have given rise to quantum dot LEDs (QD-LEDs) and QR-LEDs. QD-LEDs offer superior color purity (color vividness) and higher brightness compared to current mainstream LEDs. However, outcoupling efficiency has now become the primary obstacle, as it sets a fundamental ceiling for external quantum efficiency (EQE), thereby hindering any further performance improvements.

Quantum rods, on which QR-LEDs are based, are a type of elongated anisotropic nanocrystals with unique optical properties that can be engineered to optimize the light emission direction and ultimately improve outcoupling efficiency. However, QR-LEDs encounter two significant technical challenges: first, the ratio of emitted to absorbed photons (photoluminescence quantum yield) is relatively low after the material absorbs photons; second, there is a substantial leakage current due to poor thin-film quality.

Frontiers: Consciousness science: where are we, where are we going, and what if we get there?

The first distinction is between the notion of the level of consciousness and the notion of the contents of consciousness. In the first sense, consciousness is a property associated with an entire organism (a creature) or system: one is conscious (for example, when in a normal state of wakefulness) or not (for example, when in deep dreamless sleep or a coma). There is an ongoing vibrant debate about whether one should think of levels of consciousness as degrees of consciousness or whether they are best characterized in terms of an array of dimensions (11) or as “global states” (12). In the second sense, consciousness is always consciousness of something: our subjective experience is always “contentful”—it is always about something, a property philosophers call intentionality (3, 13). Here, again, there is some debate over the terms, for example, whether there can be fully contentless global states of consciousness (14) and whether consciousness levels (or global states) and contents are fully separable (11, 15).

The second distinction is between perceptual awareness and self-awareness (note that in this article, we use the terms consciousness and awareness interchangeably). Perceptual awareness simply refers to the fact that when we are perceptually aware, we have a qualitative experience of the external world and of our bodies within it (though of course, some perceptual experiences can be entirely fictive, such as when dreaming, vividly imagining, or hallucinating). Importantly, mere sensitivity to sensory information is not sufficient to be considered as perceptual awareness: the carnivorous plant Dionaea muscipula and the camera on your phone are both sensitive to their environment, but we have little reason to think that either has perceptual experiences. Thus, mere sensitivity is not sufficient for perceptual awareness, as it does not necessarily feel like something to be sensitive. This experiential character is precisely what makes the corresponding sensation a conscious sensation (16).

Ultracompact semiconductor could power next-gen AI and 6G chips

A research team, led by Professor Heein Yoon in the Department of Electrical Engineering at UNIST has unveiled an ultra-small hybrid low-dropout regulator (LDO) that promises to advance power management in advanced semiconductor devices. This innovative chip not only stabilizes voltage more effectively, but also filters out noise—all while taking up less space—opening new doors for high-performance system-on-chips (SoCs) used in AI, 6G communications, and beyond.

The new LDO combines analog and digital circuit strengths in a hybrid design, ensuring stable power delivery even during sudden changes in current demand—like when launching a game on your smartphone—and effectively blocking unwanted noise from the power supply.

What sets this development apart is its use of a cutting-edge digital-to-analog transfer (D2A-TF) method and a local ground generator (LGG), which work together to deliver exceptional voltage stability and noise suppression. In tests, it kept voltage ripple to just 54 millivolts during rapid 99 mA current swings and managed to restore the voltage to its proper level in just 667 nanoseconds. Plus, it achieved a power supply rejection ratio (PSRR) of −53.7 dB at 10 kHz with a 100 mA load, meaning it can effectively filter out nearly all noise at that frequency.

/* */