Menu

Blog

Archive for the ‘mobile phones’ category: Page 120

Feb 8, 2020

All Google phones will now screen robocalls, here’s how to turn it on

Posted by in categories: biotech/medical, mobile phones

If you’re tired of robocalls you might want to consider one of Google’s Pixel phones. On Thursday, Google announced that its Call Screen feature, which automatically blocks known robocallers in Google’s database, is rolling out to all Pixel phones this week. It was previously only available on the newest Pixel 3 and Pixel 4 devices. (The original Pixel phone, which launched in 2016, stopped receiving software updates last year, but Google says it’ll still get Call Screen.)

Robocalls may be driving you nuts. According to the YouMail robocall index, which is compiled from the YouMail app that’s built to also block robocalls, there were 4.7 billion robocalls placed in the U.S. in January 2020, or 1,800 a second and 14.4 calls per person. Some U.S. carriers, like AT&T, Verizon, T-Mobile and Sprint are working in the background to prevent robocalls, too. Though sometimes they still sneak through or only work on certain phones.

And other companies, like Apple, let you automatically send calls that are received from people who aren’t in your address book right to voicemail. But sometimes you miss an important call from someone, like a doctor whose number you might not have saved.

Feb 6, 2020

3D Printed Heads Can Unlock Phones. What Does that Mean for Biometric Security?

Posted by in categories: 3D printing, cybercrime/malcode, mobile phones, privacy, robotics/AI

Facial recognition technology is likely not as safe as you may have thought. This was illustrated by a recent test where 3D printed busts of peoples’ heads were used to unlock smartphones.

Out of five tested phones, only one refused to open when presented with the fake head.

Other biometric security measures are also showing less resilience to hacking than you might expect. A group of Japanese researchers recently showed it was possible to copy a person’s fingerprints from pictures like the ones many of us post on social media.

Feb 6, 2020

This Renewable Energy Device Powers 100 LEDs with a Single Drop of Water

Posted by in categories: mobile phones, sustainability

What if an umbrella could charge your phone? By tweaking well-known principles, scientists have created a highly efficient generator that can pump out lots of renewable energy with just a bit of water.

Feb 5, 2020

MIT’s solid-state battery breakthrough may see phones last for days

Posted by in categories: chemistry, mobile phones

One of the many ways scientists hope to improve the performance of today’s lithium batteries is by swapping out some of the liquid components for solid ones. Known as solid-state batteries, these experimental devices could greatly extend the life of electric vehicles and mobile devices by significantly upping the energy density packed inside. Scientists at MIT are now reporting an exciting advance toward this future, demonstrating a new type of solid-state battery architecture that overcomes some limitations of current designs.

In a regular lithium battery, a liquid electrolyte serves as the medium through which the lithium ions travel back and forth between the anode and cathode as the battery is charged and discharged. One problem is that this liquid is highly volatile and can sometimes result in battery fires, like those that plagued Samsung’s Galaxy Note 7 smartphone.

Replacing this liquid electrolyte for a solid material wouldn’t just make batteries safer and less prone to fires, it could also open up new possibilities for other key components of the battery. The anode in today’s lithium batteries is made from a mix of copper and graphite, but if it were made of pure lithium instead, it could break the “energy-density bottleneck of current Li-ion chemistry,” according to a recent study published in Trends in Chemistry.

Feb 5, 2020

The Age of Graphene: Samsung’s Revolutionary Battery Technology

Posted by in categories: biotech/medical, computing, mobile phones, nuclear energy, sustainability

Pre-historic times and ancient history are defined by the materials that were harnessed during that period.
We have the stone age, the bronze age, and the iron age.
Today is a little more complex, we live in the Space Age, the Nuclear Age, and the Information Age.
And now we are entering the Graphene Age, a material that will be so influential to our future, it should help define the period we live in.
Potential applications for Graphene include uses in medicine, electronics, light processing, sensor technology, environmental technology, and energy, which brings us to Samsung’s incredible battery technology!
Imagine a world where mobile devices and electric vehicles charge 5 times faster than they do today.
Cell phones, laptops, and tablets that fully charge in 12 minutes or electric cars that fully charge at home in only an hour.
Samsung will make this possible because, on November 28th, they announced the development of a battery made of graphene with charging speeds 5 times faster than standard lithium-ion batteries.
Before I talk about that, let’s quickly go over what Graphene is.
When you first hear about Graphene’s incredible properties, it sounds like a supernatural material out of a comic book.
But Graphene is real! And it is made out of Graphite, which is the crystallized form of carbon and is commonly found in pencils.
Graphene is a single atom thick structure of carbon atoms arranged in a hexagonal lattice and is a million time thinner than a human hair.
Graphene is the strongest lightest material on Earth.
It is 200 times stronger than steel and as much as 6 times lighter.
It can stretch up to a quarter of its length but at the same time, it is the hardest material known, harder than a diamond.
Graphene can also conduct electricity faster than any known substance, 140 times faster than silicone.
And it conducts heat 10 times better than copper.
It was first theorized by Phillip Wallace in 1947 and attempts to grow graphene started in the 1970s but never produced results that could measure graphene experimentally.
Graphene is also the most impermeable material known, even Helium atoms can’t pass through graphene.
In 2004, University of Manchester scientists Andre Geim and Konstantin Novoselov successfully isolated one atom thick flakes of graphene for the first time by repeatedly separating fragments from chunks of graphite using tape, and they were awarded the Nobel Prize in Physics in 2010 for this discovery.
Over the past 10 years, the price of Graphene has dropped at a tremendous rate.
In 2008, Graphene was one of the most expensive materials on Earth, but production methods have been scaled up since then and companies are selling Graphene in large quantities.

Sources:
http://www.graphene.manchester.ac.uk/explore/the-story-of-gr…rly-years/
https://en.wikipedia.org/wiki/History_of_graphene
https://en.wikipedia.org/wiki/Potential_applications_of_graphene
http://luratia.com/graphene/category/graphene-facts#sthash.3…mEmGp.dpbs
https://blogs.windows.com/devices/2013/02/07/hero-material-1…-graphene/
https://news.samsung.com/global/samsung-develops-battery-mat…ging-speed

Feb 1, 2020

The Ultra-Pure, Super-Secret Sand That Makes Your Phone Possible

Posted by in categories: computing, mobile phones

O„.o.


The processor that makes your laptop or cell phone work was fabricated using quartz from this obscure Appalachian backwater.

Jan 30, 2020

‘Immortality, Inc.’ Review: Birthdays Without End

Posted by in categories: mobile phones, robotics/AI

Amid today’s technological wizardry, it’s easy to forget that several decades have passed since a single innovation has dramatically raised the quality of life for millions of people. Summoning a car with one’s phone is nifty, but it pales in comparison with discovering penicillin or electrifying cities. Artificial intelligence is being heralded as the next big thing, but a cluster of scientists, technologists and investors are aiming higher. In the vernacular of Silicon Valley, where many of them are based, their goal is nothing less than disrupting death, and their story is at the center of “Immortality, Inc.” by science journalist Chip Walter.


The efforts of scientists and investors to defy the aging process—and extend the human life span—are still in their infancy.

Jan 27, 2020

ESA’s Galileo satnav system can now reply to SOS signals

Posted by in categories: military, mobile phones, satellites

Europe’s Galileo satellite navigation system can now not only receive, relay, and locate distress beacon signals, it can also respond to the SOS, sending back an acknowledgement to those awaiting rescue that their location and call for help has been received and search and rescue services are responding. The new function became operational during the 12th European Space Conference in Brussels, which ran from January 21 to 22, 2020.

Global Navigation Satellite Systems (GNSS) have come a long way since the US Military introduced the first, Transit, in the 1960s. The technology not only revolutionized navigation to the point where anyone with a smartphone can pinpoint their location with the touch of an icon, but it’s also having an increasing impact as more functions are added to that of basic navigation.

Continue reading “ESA’s Galileo satnav system can now reply to SOS signals” »

Jan 24, 2020

Apple buys Xnor.ai, an edge AI startup spin-out from Paul Allen’s research lab, for $200 million

Posted by in categories: mobile phones, robotics/AI

Tech giant Apple has acquired Xnor.ai, an artificial intelligence startup that came from Microsoft co-founder Paul Allen’s research lab. The acquisition suggests that Apple may be planning to Xnor.ai’s machine learning tools int iPhones and iPads in the future, with processing on-device instead of in the cloud.

GeekWire first broke the news earlier Wednesday, citing sources with knowledge of the deal. According to GeekWire, the deal is reportedly worth up about $200 million. Apple paid the same $200 million for another Seattle-based AI startup, Turi, in 2016.

Unlike traditional AI that runs in massive data centers and requires network connectivity, XNOR makes AI highly efficient by allowing deep learning models to run directly on phones, IoT devices and low power microprocessors. XNOR’s technology enables AI experiences that are up to 10x faster, 200 percent more power efficient, and use 15x less memory.

Jan 24, 2020

How smartphone apps changed the way people live in China

Posted by in categories: finance, food, mobile phones

Fast forward 10 years and Li’s life has completely changed. No longer in finance, he communicates via WeChat and uses apps on his iPhone XS to order food, hail taxis, pay bills, and shop.

Most of the apps that permeate the daily life of Li and hundreds of millions of other Chinese had their beginnings at the start of the decade.


The 2010s will be remembered as the decade when smartphone apps became ubiquitous, spawning new Chinese tech giants whose platforms forever changed the way people live.

Continue reading “How smartphone apps changed the way people live in China” »