Archive for the ‘mathematics’ category: Page 80

Dec 1, 2020

Quantum coherence times, 2000–2040

Posted by in categories: computing, mathematics, quantum physics

Coherence times in quantum computing have increased by orders of magnitude since the early 2000s. If this exponential progress continues, coherence times measured in seconds or even minutes could be achieved in the near future.

When discussing the latest quantum computers, most people tend to focus on the number of quantum bits (or qubits) in a system. However, while qubit counts are a very important factor, another key metric is coherence time, which measures how long a qubit can hold information.

In order to generate complex mathematical calculations, a qubit needs to hold information for as long as possible. That requires physical qubits to remain highly isolated from the surrounding environment. When a qubit is disrupted by external stimuli – such as background noise from vibrations, temperature changes or stray electromagnetic fields – information about the state of that qubit “leaks out” in a process known as decoherence. This can ruin the ability to exploit any quantum effects. Longer coherence times enable more quantum gates to be utilised before this occurs, resulting in more complex calculations.

Nov 30, 2020

Undergraduate Math Student Pushes Frontier of Graph Theory

Posted by in category: mathematics

At 21, Ashwin Sah has produced a body of work that senior mathematicians say is nearly unprecedented for a college student.

Nov 30, 2020

New family of quasiparticles appears in graphene

Posted by in categories: chemistry, computing, mathematics, particle physics

Researchers identify Brown-Zak fermions in superlattices made from the carbon sheet.

Researchers at the University of Manchester in the UK have identified a new family of quasiparticles in superlattices made from graphene sandwiched between two slabs of boron nitride. The work is important for fundamental studies of condensed-matter physics and could also lead to the development of improved transistors capable of operating at higher frequencies.

In recent years, physicists and materials scientists have been studying ways to use the weak (van der Waals) coupling between atomically thin layers of different crystals to create new materials in which electronic properties can be manipulated without chemical doping. The most famous example is graphene (a sheet of carbon just one atom thick) encapsulated between another 2D material, hexagonal boron nitride (hBN), which has a similar lattice constant. Since both materials also have similar hexagonal structures, regular moiré patterns (or “superlattices”) form when the two lattices are overlaid.

Continue reading “New family of quasiparticles appears in graphene” »

Nov 27, 2020

Underlying Features of Epigenetic Aging Clocks | Morgan Levine, Yale University

Posted by in categories: biotech/medical, genetics, life extension, mathematics, robotics/AI

Methylation definition at 5:05, 27:20 a lil about reprogramming, 32:00 q&a, 47:44 Aubrey chimes in, 57:00 Keith Comito(and other throughout)

Zoom transcription:

Continue reading “Underlying Features of Epigenetic Aging Clocks | Morgan Levine, Yale University” »

Nov 24, 2020

How A Leading Educator For Gifted Students Discovers Untapped Potential Of Migrant Children Through Math

Posted by in categories: mathematics, neuroscience

This is a story about math educator Mark Saul, and his Math on The Border program for migrant children. Mark and his team are trying to work with these children, and to encourage them. Mark is not only one of the best math educators in the world, he is also an amazing human being.

Having an opportunity to use one’s brain is a basic human need, says Saul. Back at the Templeton Foundation, he studied under-exploited human capital and the boundless human potential. Despite their difficult past and uncertain future, migrant children are eager to build their math skills. Resourceful and resilient in the face of failure, they reshuffle the pieces and try again. They work in groups and make new friends along the way. Many of them are highly gifted – Saul can attest to that. It doesn’t take him long to see what these children, abandoned by life, are capable of with just a little encouragement. And he can tell from the looks on their faces how delighted they are at having their abilities recognized and valued.

Nov 20, 2020

Geometry Reveals How the World Is Assembled From Cubes

Posted by in categories: health, mathematics

An exercise in pure mathematics has led to a wide-ranging theory of how the world comes together.

Nov 20, 2020

Iconic Arecibo Alien-Hunting Observatory Will Be Demolished

Posted by in categories: alien life, entertainment, mathematics

It’s a sad day. The observatory has not only been used to observe radio wave signals in deep space. It’s also become an iconic landmark over the decades after being featured in countless films and TV shows including the 1995 James Bond blockbuster “GoldenEye.”

The observatory has also made significant contributions to the Search for Extraterrestrial Intelligence (SETI), spotting mysterious radio signals emanating from distant corners of the universe.

“This decision is not an easy one for NSF to make, but safety of people is our number one priority,” Sean Jones, the assistant director for the mathematical and physical sciences directorate at NSF, told reporters today over a conference call, as quoted by The Verge.

Nov 19, 2020

Dark Matter Candidate Could Generate String-Like Entities in Exotic Materials

Posted by in categories: cosmology, mathematics, particle physics, quantum physics

Calculations show how theoretical ‘axionic strings’ could create odd behavior if produced in exotic materials in the lab.

A hypothetical particle that could solve one of the biggest puzzles in cosmology just got a little less mysterious. A RIKEN physicist and two colleagues have revealed the mathematical underpinnings that could explain how so-called axions might generate string-like entities that create a strange voltage in lab materials.

Axions were first proposed in the 1970s by physicists studying the theory of quantum chromodynamics, which describes how some elementary particles are held together within the atomic nucleus. The trouble was that this theory predicted some bizarre properties for known particles that are not observed. To fix this, physicists posited a new particle—later dubbed the axion, after a brand of laundry detergent, because it helped clean up a mess in the theory.

Nov 18, 2020

Physicists discover the ‘Kings and Queens of Quantumness’

Posted by in categories: mathematics, quantum physics

Extreme quantum states.

A new mathematical framework helps physicists define the degree of quantumness of a system.

Nov 18, 2020

Expect the Unexpected: Frontiers of Mathematics, Computation, Systems and Design

Posted by in categories: government, mathematics, robotics/AI, security, surveillance

AI designed to be aware of it’s own competence.

Ira Pastor, ideaXme life sciences ambassador interviews Dr. Jiangying Zhou, DARPA program manager in the Defense Sciences Office, USA.

Continue reading “Expect the Unexpected: Frontiers of Mathematics, Computation, Systems and Design” »

Page 80 of 124First7778798081828384Last