Menu

Blog

Archive for the ‘mathematics’ category: Page 74

Jun 11, 2021

This Neural Networkfrom OpenAI can Learn from Small Datasets

Posted by in categories: mathematics, robotics/AI

Glow is an iconic interesting research about deep neural networks that can generalize with small training sets.


Since the early days of machine learning, artificial intelligence scenarios have faced with two big challenges in order to experience mainstream adoption. First, we have the data efficiency problem that requires machine or deep learning models to be trained using large and accurate datasets which, as we know, are really expensive to build and maintain. Secondly, we have the generalization problem which AI agents face in order to build new knowledge that is different from the training data. Humans, by contrast, are incredibly efficient learning with minimum supervision and rapidly generalizing knowledge from a few data examples.

Generative models are one of the deep learning disciplines that focuses on addressing the two challenges mentioned above. Conceptually, generative models are focused on observing an initial dataset, like a set of pictures, and try to learn how the data was generated. Using more mathematical terms, generative models try to infer all dependencies within very high-dimensional input data, usually specified in the form of a full joint probability distribution. Entire deep learning areas such as speech synthesis or semi-supervised learning are based on generative models. Recently, generative models such as generative adversarial networks(GANs) have become extremely popular within the deep learning community. Recently, OpenAI experimented with a not-very well-known technique called Flow-Based Generative Models in order to improve over existing methods.

Continue reading “This Neural Networkfrom OpenAI can Learn from Small Datasets” »

Jun 10, 2021

The Mystery at the Heart of Physics That Only Math Can Solve

Posted by in categories: mathematics, quantum physics

The accelerating effort to understand the mathematics of quantum field theory will have profound consequences for both math and physics.

Jun 9, 2021

Spacetime Crystals: New Mathematical Formula May Solve Old Problem in Understanding the Fabric of the Universe

Posted by in categories: mathematics, physics, space

A Penn State scientist studying crystal structures has developed a new mathematical formula that may solve a decades-old problem in understanding spacetime, the fabric of the universe proposed in Einstein’s theories of relativity.

“Relativity tells us space and time can mix to form a single entity called spacetime, which is four-dimensional: three space-axes and one time-axis,” said Venkatraman Gopalan, professor of materials science and engineering and physics at Penn State. “However, something about the time-axis sticks out like sore thumb.”

For calculations to work within relativity, scientists must insert a negative sign on time values that they do not have to place on space values. Physicists have learned to work with the negative values, but it means that spacetime cannot be dealt with using traditional Euclidean geometry and instead must be viewed with the more complex hyperbolic geometry.

Jun 9, 2021

Quantum computing is inevitable, cryptography prepares for the future

Posted by in categories: chemistry, encryption, mathematics, quantum physics, robotics/AI, security

Quantum computing began in the early 1980s. It operates on principles of quantum physics rather than the limitations of circuits and electricity which is why it is capable of processing highly complex mathematical problems so efficiently. Quantum computing could one day achieve things that classical computing simply cannot. The evolution of quantum computers has been slow, but things are accelerating, thanks to the efforts of academic institutions such as Oxford, MIT, and the University of Waterloo, as well as companies like IBM, Microsoft, Google, and Honeywell.

IBM has held a leadership role in this innovation push and has named optimization as the most likely application for consumers and organizations alike.

Honeywell expects to release what it calls the “world’s most powerful quantum computer” for applications like fraud detection, optimization for trading strategies, security, machine learning, and chemistry and materials science.

May 31, 2021

This mathematical brain model may pave the way for more human-like AI

Posted by in categories: mathematics, robotics/AI

These groups of brain cells are called “assemblies,” which Papadimitriou describes as “a highly connected, stable set of neurons which represent something: a word, an idea, an object, etc.”

Award-winning neuroscientist György Buzsáki describes assemblies as “the alphabet of the brain.”

May 27, 2021

US Energy Department launches the Perlmutter AI supercomputer

Posted by in categories: mathematics, robotics/AI, supercomputing

The US Department of Energy on Thursday is officially dedicating Perlmutter, a next-generation supercomputer that will deliver nearly four exaflops of AI performance. The system, based at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, is the world’s fastest on the 16-bit and 32-bit mixed-precision math used for AI.

The HPE Cray system is being installed in two phases. Each of Phase 1’s GPU-accelerated nodes has four Nvidia A100 Tensor Core GPUs, for a total of 6159 Nvidia A100 Tensor Core GPUs. Each Phase 1 node also has a single AMD Milan CPU.

May 27, 2021

Scientists recognize intruders in noise

Posted by in categories: biological, economics, mathematics, security

## MATHEMATICS • MAY 24, 2021

# *Noise is commonly discarded, but identifying patterns in noise can be very useful.*

*Generalize the Hearst exponent by adding more coefficients in order to get a more complete description of the changing data. This makes it possible to find patterns in the data that are usually considered noise and were previously impossible to analyze.*

Continue reading “Scientists recognize intruders in noise” »

May 23, 2021

The Mental Universe Hypothesis: Reconnecting to Your Cosmic Self

Posted by in categories: alien life, chemistry, evolution, mathematics, particle physics, quantum physics

From a purely scientific frame of reference, many quantum phenomena like non-local correlations between distant entities and wave-particle duality, the wave function collapse and consistent histories, quantum entanglement and teleportation, the uncertainty principle and overall observer-dependence of reality pin down our conscious mind being intrinsic to reality. And this is the one thing the current physicalist paradigm fails to account for. Critical-mass anomalies will ultimately lead to the full paradigm shift in physics. It’s just a matter of time.

With consciousness as primary, everything remains the same and everything changes. Mathematics, physics, chemistry, biology are unchanged. What changes is our interpretation as to what they are describing. They are not describing the unfolding of an objective physical world, but transdimensional evolution of one’s conscious mind. There’s nothing “physical” about our physical reality except that we perceive it that way. By playing the “Game of Life” we evolved to survive not to see quantum mechanical reality. At our classical level of experiential reality we perceive ourselves as physical, at the quantum level we are a probabilistic wave function, which is pure information.

Continue reading “The Mental Universe Hypothesis: Reconnecting to Your Cosmic Self” »

May 22, 2021

Dr. Missy Cummings, Ph.D — Professor, Duke University — Director, Humans and Autonomy Laboratory

Posted by in categories: drones, mathematics, military, policy, robotics/AI

Engineering A Safer World For Humans With Self Driving Cars, Drones, and Robots — Dr. Missy Cummings PhD, Professor, Duke University, Director, Humans and Autonomy Laboratory, Duke Engineering.


Dr. Mary “Missy” Cummings, is a Professor in the Department of Electrical and Computer Engineering, at the Pratt School of Engineering, at Duke University, the Duke Institute of Brain Sciences, and is the Director of the Humans and Autonomy Laboratory and Duke Robotics.

Continue reading “Dr. Missy Cummings, Ph.D — Professor, Duke University — Director, Humans and Autonomy Laboratory” »

May 1, 2021

Artificial Intelligence Algorithm Helps Unravel the Physics Underlying Quantum Systems

Posted by in categories: information science, mathematics, particle physics, quantum physics, robotics/AI

Protocol to reverse engineer Hamiltonian models advances automation of quantum devices.

Scientists from the University of Bristol ’s Quantum Engineering Technology Labs (QETLabs) have developed an algorithm that provides valuable insights into the physics underlying quantum systems — paving the way for significant advances in quantum computation and sensing, and potentially turning a new page in scientific investigation.

In physics, systems of particles and their evolution are described by mathematical models, requiring the successful interplay of theoretical arguments and experimental verification. Even more complex is the description of systems of particles interacting with each other at the quantum mechanical level, which is often done using a Hamiltonian model. The process of formulating Hamiltonian models from observations is made even harder by the nature of quantum states, which collapse when attempts are made to inspect them.

Page 74 of 124First7172737475767778Last