Menu

Blog

Archive for the ‘mathematics’ category: Page 3

Dec 31, 2024

Space-Time: The Biggest Problem in Physics

Posted by in categories: cosmology, holograms, information science, mathematics, particle physics, quantum physics

What is the deepest level of reality? In this Quanta explainer, Vijay Balasubramanian, a physicist at the University of Pennsylvania, takes us on a journey through space-time to investigate what it’s made of, why it’s failing us, and where physics can go next.

Explore black holes, holograms, “alien algebra,” and more space-time geometry: https://www.quantamagazine.org/the-un

Continue reading “Space-Time: The Biggest Problem in Physics” »

Dec 31, 2024

Sir Roger Penrose: Bridging The Worlds Of Mind, Mathematics, And Mysticism

Posted by in categories: cosmology, mathematics, neuroscience

Sir Roger Penrose, a name synonymous with genius, has tirelessly pursued the secrets of the universe with the fervour of a true renaissance seer. His intellectual contributions span a breathtaking range, from the intricate beauty of Penrose tilings to the vast expanse of cosmology, and even the enigmatic depths of human consciousness.

Dec 30, 2024

Philosophy of Mathematics: Platonism

Posted by in category: mathematics

A non-technical introduction to platonism in the philosophy of mathematics.

Philosophy of mathematics is important, especially for philosophers interested in metaphysics. Suppose, for instance, you have nominalist tendencies, and you argue against the existence of abstract objects. Well, probably the most important kind of abstract objects are found in mathematics. Any serious nominalist needs to give an account of them.

Continue reading “Philosophy of Mathematics: Platonism” »

Dec 28, 2024

This Cryptographer Helps Quantum-Proof the Internet

Posted by in categories: computing, encryption, information science, internet, mathematics, quantum physics

Users of Google’s Chrome browser can rest easy knowing that their surfing is secure, thanks in part to cryptographer Joppe Bos. He’s coauthor of a quantum-secure encryption algorithm that was adopted as a standard by the U.S. National Institute of Standards and Technology (NIST) in August and is already being implemented in a wide range of technology products, including Chrome.

Rapid advances in quantum computing have stoked fears that future devices may be able to break the encryption used by most modern technology. These approaches to encryption typically rely on mathematical puzzles that are too complex for classical computers to crack. But quantum computers can exploit quantum phenomena like superposition and entanglement to compute these problems much faster, and a powerful enough machine should be able to break current encryption.

Dec 28, 2024

Can Classical Worlds Emerge from Parallel Quantum Universes?

Posted by in categories: biotech/medical, mathematics, quantum physics

Simulations deliver hints on how the multiverse produced according to the many-worlds interpretation of quantum mechanics might be compatible with our stable, classical Universe.

We understand quantum mechanics well enough to make stunningly accurate predictions, ranging from atomic spectra to the structure of neutron stars, and to successfully exploit these predictions in devices such as lasers, MRI machines, and tunneling microscopes. Yet there is no generally accepted explanation of how the solid reality of such devices—or of objects such as cats, moons, and people—arise from a nebulous quantum wave in an abstract mathematical space. Some physicists prefer to ignore the problem, suggesting that we should just “shut up and calculate!” Others seek answers by modifying quantum theory in various ways or by searching for ways to explain how stable structures can emerge from quantum theory itself.

Dec 25, 2024

The Mathematical Language of Consciousness

Posted by in categories: mathematics, neuroscience, quantum physics

A breakthrough discovery in quantum semantics.

Dec 25, 2024

An AI system has reached human level on a test for ‘general intelligence’—here’s what that means

Posted by in categories: mathematics, robotics/AI

A new artificial intelligence (AI) model has just achieved human-level results on a test designed to measure “general intelligence.”

On December 20, OpenAI’s O3 system scored 85% on the ARC-AGI benchmark, well above the previous AI best score of 55% and on par with the average human score. It also scored well on a very difficult mathematics test.

Creating artificial , or AGI, is the stated goal of all the major AI research labs. At first glance, OpenAI appears to have at least made a significant step towards this goal.

Dec 24, 2024

Computer models are vital for studying everything. Here’s how AI could make them even better

Posted by in categories: biotech/medical, mathematics, robotics/AI

Here’s one definition of science: it’s essentially an iterative process of building models with ever-greater explanatory power.

A model is just an approximation or simplification of how we think the world works. In the past, these models could be very simple, as simple in fact as a mathematical formula. But over time, they have evolved and scientists have built increasingly sophisticated simulations of the world as new data has become available.

A computer model of the Earth’s climate can show us temperatures will rise as we continue to release greenhouse gases into the atmosphere. Models can also predict how infectious disease will spread in a population, for example.

Dec 24, 2024

Algebraic geometry offers fresh solution to data center energy inefficiency

Posted by in categories: computing, information science, mathematics

The manic pace of sharing, storing, securing, and serving data has a manic price—power consumption. To counter this, Virginia Tech mathematicians are leveraging algebraic geometry to target the inefficiencies of data centers.

“We as individuals generate tons of data all the time, not to mention what large companies are producing,” said Gretchen Matthews, mathematics professor and director of the Southwest Virginia node of the Commonwealth Cyber Initiative. “Backing up that data can mean replicating and storing twice or three times as much information if we don’t consider smart alternatives.”

Instead of energy-intensive data replication, Matthews and Hiram Lopez, assistant professor of mathematics, explored using certain algebraic structures to break the information into pieces and spread it out among servers in close proximity to each other. When one server goes down, the algorithm can poll the neighboring servers until it recovers the .

Dec 24, 2024

Scientists reinvent equations governing formation of snowflakes, raindrops and Saturn’s rings

Posted by in categories: engineering, information science, mathematics, particle physics, space

Skoltech researchers have proposed novel mathematical equations that describe the behavior of aggregating particles in fluids. This bears on natural and engineering processes as diverse as rain and snow formation, the emergence of planetary rings, and the flow of fluids and powders in pipes.

Reported in Physical Review Letters, the new equations eliminate the need for juggling two sets of equations that had to be used in conjunction, which led to unacceptable errors for some applications.

Fluid aggregation is involved in many processes. In the atmosphere, agglomerate into rain, and ice microcrystals into snow. In space, particles orbiting come together to form rings like those of Saturn.

Page 3 of 15912345678Last