Menu

Blog

Archive for the ‘materials’ category: Page 85

Aug 31, 2023

LIBS confirms the presence of Sulphur (S) on the lunar surface through unambiguous in-situ measurements

Posted by in category: materials

The Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard Chandrayaan-3 Rover has made the first-ever in-situ measurements on the elemental composition of the lunar surface near the south pole. These in-situ measurements confirm the presence of Sulphur (S) in the region unambiguously, something that was not feasible by the instruments onboard the orbiters.

LIBS is a scientific technique that analyzes the composition of materials by exposing them to intense laser pulses. A high-energy laser pulse is focused onto the surface of a material, such as a rock or soil. The laser pulse generates an extremely hot and localized plasma. The collected plasma light is spectrally resolved and detected by detectors such as Charge Coupled Devices. Since each element emits a characteristic set of wavelengths of light when it’s in a plasma state, the elemental composition of the material is determined.

Preliminary analyses, graphically represented, have unveiled the presence of Aluminum (Al), Sulphur (S), Calcium (Ca), Iron (Fe), Chromium (Cr), and Titanium (Ti) on the lunar surface. Further measurements have revealed the presence of manganese (Mn), silicon (Si), and oxygen (O). Thorough investigation regarding the presence of Hydrogen is underway.

Aug 30, 2023

Biopolymer Photonics: From Nature to Nanotechnology

Posted by in categories: materials, nanotechnology

Simple heterojunction combines many functions in a single component.

Aug 28, 2023

Scientists discover strange ‘singularities’ responsible for exotic type of superconductivity

Posted by in category: materials

Superconductors that work at temperatures much higher than absolute zero have befuddled scientists since they were discovered. A new theory might be about to change that.

Aug 28, 2023

Discovery puts a magnetic spin on neuromorphic computing

Posted by in categories: computing, materials

The word “fractals” might inspire images of psychedelic colors spiraling into infinity in a computer animation. An invisible, but powerful and useful, version of this phenomenon exists in the realm of dynamic magnetic fractal networks.

Dustin Gilbert, assistant professor in the Department of Materials Science and Engineering, and colleagues have published new findings in the behavior of these networks—observations that could advance neuromorphic computing capabilities.

Their research is detailed in their article “Skyrmion-Excited Spin-Wave Fractal Networks,” cover story for the August 17, 2023, issue of Advanced Materials.

Aug 28, 2023

A Hidden State Between Liquid And Solid May Have Been Found

Posted by in categories: materials, particle physics

Glass might look and feel like a perfectly ordered solid, but up close its chaotic arrangement of particles more closely resemble the tumultuous mess of a freefalling liquid frozen in time.

Known as amorphous solids, materials in this state defy easy explanation. New research involving computation and simulation is yielding clues. In particular, it suggests that, somewhere in between liquid and solid states is a kind of rearrangement we didn’t know existed.

Continue reading “A Hidden State Between Liquid And Solid May Have Been Found” »

Aug 28, 2023

Clean Power Breakthrough: “Impossible” Energy Generation Using Graphene Challenges Century-Old Physics Paradigms

Posted by in categories: materials, particle physics

A team of researchers reports they have succeeded in disproving a long-held tenet of modern physics–that useful work cannot be obtained from random thermal fluctuations–thanks in part to the unique properties of graphene.

The microscopic motion of particles within a fluid, otherwise known as Brownian motion for its discovery by Scottish scientist Robert Brown, has long been considered an impossible means of attempting to generate useful work.

The idea had been most famously laid to rest decades ago by physicist Richard Feynman, who proposed a thought experiment in May 1962 involving an apparent perpetual motion machine, dubbed a Brownian ratchet.

Aug 26, 2023

Physicists synthesize single-crystalline iron in the form likely found in Earth’s core

Posted by in categories: materials, physics

A team of physicists and geologists at CEA DAM-DIF and Universit´e Paris-Saclay, working with a colleague from ESRF, BP220, F-38043 Grenoble Cedex and another from the European Synchrotron Radiation Facility, has succeeded in synthesizing a single-crystalline iron in a form that iron has in the Earth’s core.

In their published in the journal Physical Review Letters, the group describes how they used an experimental approach to synthesize pure single-crystalline ε-iron and possible uses for the material.

In trying to understand Earth’s internal composition, scientists have had to rely mostly on seismological data. Such studies have led scientists to believe that the core is solid and that it is surrounded by liquid. But questions have remained. For example, back in the 1980s, studies revealed that seismic waves travel faster through the Earth when traveling pole to pole versed equator to equator, and no one could explain why.

Aug 25, 2023

Diamond’s Downfall: The Quantum World’s Next Top Material

Posted by in categories: materials, quantum physics

Diamond has long been the preferred material for quantum sensing, but its size limits its applications. Recent research highlights hBN’s potential as a replacement, especially after TMOS researchers developed methods to stabilize its atomic defects and study its charge states, opening doors for its integration into devices where diamond can’t fit.

Diamond has long held the crown in the realm of quantum sensing, thanks to its coherent nitrogen-vacancy centers, adjustable spin, magnetic field sensitivity, and capability to operate at room temperature. With such a suitable material so easy to fabricate and scale, there’s been little interest in exploring diamond alternatives.

However, this titan of the quantum domain has a vulnerability. It’s simply too large. Much like how an NFL linebacker isn’t the top pick for a jockey in the Kentucky Derby, diamond falls short when delving into quantum sensors and data processing. When diamonds get too small, the super-stable defect it’s renowned for begins to crumble. There is a limit at which a diamond becomes useless.

Aug 23, 2023

Lithium-Ion Batteries CAN Be Recycled! RecycLiCo Battery Materials & Kemetco Research Tour

Posted by in categories: materials, sustainability

Recycling is now cheaper than mining.


Sandy visits the teams at RecycLiCo Battery Materials and Kemetco Research for an in-depth discussion on battery recycling and a tour of a facility that’s making this dream a reality.

Continue reading “Lithium-Ion Batteries CAN Be Recycled! RecycLiCo Battery Materials & Kemetco Research Tour” »

Aug 22, 2023

Engineers use kirigami to make ultrastrong, lightweight structures

Posted by in category: materials

Cellular solids are materials composed of many cells that have been packed together, such as in a honeycomb. The shape of those cells largely determines the material’s mechanical properties, including its stiffness or strength. Bones, for instance, are filled with a natural material that enables them to be lightweight, but stiff and strong.

Inspired by bones and other cellular solids found in nature, humans have used the same concept to develop architected materials. By changing the geometry of the unit cells that make up these materials, researchers can customize the material’s mechanical, thermal, or acoustic properties. Architected materials are used in many applications, from shock-absorbing packing foam to heat-regulating radiators.

Using , the ancient Japanese art of folding and cutting paper, MIT researchers have now manufactured a type of high-performance architected material known as a plate lattice, on a much larger scale than scientists have previously been able to achieve by additive fabrication. This technique allows them to create these structures from metal or other materials with custom shapes and specifically tailored mechanical properties.

Page 85 of 307First8283848586878889Last