Toggle light / dark theme

New evidence points to two distinct Australian tektite groups with different origins

Throughout the planet, there are only a handful of known tektite strewn fields, which are large swaths of land where natural glass (tektite) was strewn about after forming from terrestrial material and being ejected from a meteorite impact. The tektite glass can be ejected extremely long distances, placing strewn fields far from their origins.

Color-changing organogel stretches 46 times its size and self-heals

Scientists from Taiwan have developed a new material that can stretch up to 4,600% of its original length before breaking. Even if it does break, gently pressing the pieces together at room temperature allows it to heal, fully restoring its shape and stretchability within 10 minutes.

The sticky and stretchy polyurethane (PU) organogels were designed by combining covalently linked (CNCs) and modified mechanically interlocked molecules (MIMs) that act as artificial molecular muscles.

The muscles make the gel sensitive to external forces such as stretching or heat, where its color changes from orange to blue based on whether the material is at rest or stimulated. Thanks to these unique properties, the gels hold great promise for next-generation technologies—from flexible electronic skins and soft robots to anti-counterfeiting solutions.

Innovative microscope captures large, high-resolution images of curved samples in single snapshot

Researchers have developed a new type of microscope that can acquire extremely large, high-resolution pictures of non-flat objects in a single snapshot. This innovation could speed up research and medical diagnostics or be useful in quality inspection applications.

“Although traditional microscopes assume the sample is perfectly flat, real-life samples such as tissue sections, plant samples or flexible materials may be curved, tilted or uneven,” said research team leader Roarke Horstmeyer from Duke University.

“With our approach, it’s possible to adjust the focus across the sample, so that everything remains in focus even if the sample surface isn’t flat, while avoiding slow scanning or expensive special lenses.”

Scientists Discover Ordinary Ice Has Extraordinary Electrical Properties

Ice can generate electricity when bent, a process called flexoelectricity. The discovery connects to lightning formation and future device applications. Ice is among the most common materials on Earth, covering glaciers, mountain ranges, and the polar regions. Despite its familiarity, ongoing res

Electrical flash method rapidly purifies red mud into strong ceramics, aluminum feedstock

A team of researchers at Rice University has developed a faster and cleaner method for recovering aluminum and removing toxic metals from bauxite residue, or red mud, which is a hazardous by-product of aluminum production.

This new technique, published in ACS Applied Materials and Interfaces, involves a brief electrical pulse lasting under one minute, along with a small amount of chlorine gas. If implemented on a larger scale, it could revolutionize global waste management and materials recovery.

The process uses flash joule heating (FJH), which rapidly heats materials with a short, high-power electrical pulse to vaporize harmful metals, leaving behind a residue rich in aluminum. This aluminum-rich material can then be repurposed into durable ceramic tiles or bricks or resubjected to the normal aluminum production process. The method offers a practical and scalable solution to address a significant pollution problem by transforming it into valuable materials, marking an advancement in industrial waste recovery.

Supercapacitor outperforms batteries in power delivery

Engineers in Australia have created a new carbon-based material which allows supercapacitors to store as much energy as traditional lead-acid batteries and deliver charge much faster.

The new graphene materials are now being made in commercial quantities, says Dr Phillip Aitchison, chief technical officer of Monash University spinout Ionic Industries.

“We’re working with energy storage partners to bring this breakthrough to market-led applications – where both high energy and fast power delivery are essential.”

Ant swarm simulation unlocks possibilities in materials engineering, robot navigation and traffic control

Think twice about eliminating those pesky ants at your next family picnic. Their behavior may hold the key to reinventing how engineering materials, traffic control and multi-agent robots are made and utilized, thanks to research conducted by recent graduate Matthew Loges and Assistant Professor Tomer Weiss from NJIT’s Ying Wu College of Computing.

The two earned a best presentation award for their research paper titled “Simulating Ant Swarm Aggregations Dynamics” at the ACM SIGGRAPH Symposium for Computer Animation (SCA), and a qualifying poster nomination for the undergraduate research competition at the 2025 ACM SIGGRAPH (Special Interest Group on Computer Graphics and Interactive Techniques) conference.

Their study began with the observation that ant swarms behave in a manner similar to both fluid and . The duo began work in the summer of 2024. Loges became interested in research after he took an elective class with Weiss, IT 360 Computer Graphics for Visual Effects, at the Department of Informatics. This was his first project and research paper.

Ultrafast infrared light pulses trigger rapid ‘breathing’ in thin film

Cornell Engineering researchers have demonstrated that, by zapping a synthetic thin film with ultrafast pulses of low-frequency infrared light, they can cause its lattice to atomically expand and contract billions of times per second—strain-driven “breathing” that could potentially be harnessed to quickly switch a material’s electronic, magnetic or optical properties on and off.

The research was published in Physical Review Letters. The paper’s co-lead authors are former postdoctoral researcher Jakob Gollwitzer and doctoral student Jeffrey Kaaret.

Stretching and squishing a material to induce strain is a common method to manipulate its properties, but using light for that purpose has been less studied, according to Nicole Benedek, associate professor of materials science and engineering, who co-led the project with Andrej Singer, associate professor of materials science and engineering in Cornell Engineering.

Electrons that act like photons reveal a quantum secret

Quantum materials, defined by their photon-like electrons, are opening new frontiers in material science. Researchers have synthesized organic compounds that display a universal magnetic behavior tied to a distinctive feature in their band structures called linear band dispersion. This discovery not only deepens the theoretical understanding of quantum systems but also points toward revolutionary applications in next-generation information and communication technologies that conventional materials cannot achieve.

/* */