Menu

Blog

Archive for the ‘materials’ category: Page 56

Sep 9, 2023

Physicists Have Figured Out a Way to Write in Water

Posted by in categories: materials, particle physics

There are several perfectly good reasons why water isn’t a popular medium for calligraphers to write in. Constantly shifting and swirling, it doesn’t take long for ink to diffuse and flow out of formation.

An ingenious ‘pen’ developed by the researchers from Johannes Gutenberg University Mainz (JGU) and the Technical University of Darmstadt in Germany, and Huazhong University of Science and Technology in China, could give artists a whole new medium to work with.

The new device is a tiny, 50 micron-wide bead made of a special material that exchanges ions in the liquid, creating zones of relatively low pH. Traces of particles suspended in the water are then drawn to the acidic solution. Drawing out that zone can create persistent, ‘written’ lines.

Sep 8, 2023

The Shape of Future’s Technology You Won’t Believe!

Posted by in categories: materials, media & arts

Prepare to be awestruck by the incredible technological advancements on the horizon! Explore the mind-blowing innovations coming in the next 10 years.
#brightside.

Animation is created by Bright Side.

Continue reading “The Shape of Future’s Technology You Won’t Believe!” »

Sep 6, 2023

Light-field control of real and virtual charge carriers

Posted by in categories: computing, materials

Year 2022 femtosecond logic gates for computers once thought to be almost a myth only for 2099 dreams is now real.


Light-field control of real and virtual charge carriers in a gold–graphene–gold heterostructure is demonstrated, and used to create a logic gate for application in lightwave electronics.

Sep 6, 2023

For The First Time, The Roiling Mass Circling a Monster Black Hole Has Been Measured

Posted by in categories: cosmology, materials

An active supermassive black hole is one of the greatest wonders in the cosmos.

A dense, invisible object that can be billions of times the mass of our Sun is surrounded by a vast, churning disk and torus of material, blazing with light as it swirls down onto the black hole center. But how big do these structures grow?

Continue reading “For The First Time, The Roiling Mass Circling a Monster Black Hole Has Been Measured” »

Sep 4, 2023

Two distinct charge density wave orders and their intricate interplay with superconductivity in pressurized CuTe

Posted by in categories: materials, quantum physics

In a study published in Matter, researchers led by Prof. Yang Zhaorong and Prof. Hao Ning from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences found that the quasi-one-dimensional charge density wave (CDW) material cupric telluride (CuTe) provides a rare and promising platform for the study of multiple CDW orders and superconductivity under high pressure.

The interplay between superconductivity and CDW has always been one of the central issues in the research of condensed matter physics. While theory generally predicts that they compete with each other, superconductivity and CDW can manifest under external stimuli in practical materials. Additionally, recent research in the superconducting cuprates and the Kagome CsV3Sb5 has found that superconductivity interacts with multiple CDW orders. However, in the above two systems, there are some other quantum orders in the phase diagrams, which hinders a good understanding of the interplay between superconductivity and multiple CDWs.

In this study, the researchers provided solid evidence for a second CDW order in the quasi-one-dimensional CDW material CuTe under . In addition, they found that superconductivity can be induced and that it has complex relationships with the native and emergent CDW orders.

Sep 4, 2023

A technique to facilitate the robotic manipulation of crumpled cloths

Posted by in categories: materials, robotics/AI

To assist humans during their day-to-day activities and successfully complete domestic chores, robots should be able to effectively manipulate the objects we use every day, including utensils and cleaning equipment. Some objects, however, are difficult to grasp and handle for robotic hands, due to their shape, flexibility, or other characteristics.

These objects include textile-based cloths, which are commonly used by humans to clean surfaces, polish windows, glass or mirrors, and even mop the floors. These are all tasks that could be potentially completed by robots, yet before this can happen robots will need to be able to grab and manipulate cloths.

Continue reading “A technique to facilitate the robotic manipulation of crumpled cloths” »

Sep 4, 2023

Scientists make the first observation of a nucleus decaying into four particles after beta decay

Posted by in categories: materials, particle physics

Not all of the material around us is stable. Some materials may undergo radioactive decay to form more stable isotopes. Scientists have now observed a new decay mode for the first time. In this decay, a lighter form of oxygen, oxygen-13 (with eight protons and five neutrons), decays by breaking into three helium nuclei (an atom without the surrounding electrons), a proton, and a positron (the antimatter version of an electron).

Scientists observed this decay by watching a single nucleus break apart and measuring the breakup products. The study is published in the journal Physical Review Letters.

Scientists have previously observed interesting modes of following the process called beta-plus decay. This is where a proton turns into a neutron and emits some of the produced energy by emitting a positron and an antineutrino. After this initial beta-decay, the resulting nucleus can have enough energy to boil off extra particles and make itself more stable.

Sep 4, 2023

Faster Than Can Be Explained — Photonic Time Crystals Could Revolutionize Optics

Posted by in categories: materials, space

A study recently published in the journal Nanophotonics reveals that by rapidly modulating the refractive index – which is the ratio of the speed of electromagnetic radiation in a medium compared to its speed in a vacuum – it’s possible to produce photonic time crystals (PTCs) in the near-visible part of the spectrum.

The study’s authors suggest that the ability to sustain PTCs in the optical domain could have profound implications for the science of light, enabling truly disruptive applications in the future.

PTCs, materials in which the refractive index rises and falls rapidly in time, are the temporal equivalent of photonic crystals in which the refractive index oscillates periodically in space causing, for example, the iridescence of precious minerals and insect wings.

Sep 3, 2023

How would room-temperature superconductors change science?

Posted by in categories: materials, science

The prized materials could be transformative for research — but only if they have other essential qualities.

Sep 1, 2023

Energy Vault’s First Grid-Scale Gravity Energy Storage System Is Near Complete

Posted by in categories: energy, materials, robotics/AI

The system is like a solid version of pumped hydro, which uses surplus generating capacity to pump water uphill into a reservoir. When the water’s released it flows down through turbines, making them spin and generate energy.

Energy Vault’s solid gravity system uses huge, heavy blocks made of concrete and composite material and lifts them up in the air with a mechanical crane. The cranes are powered by excess energy from the grid, which might be created on very sunny or windy days when there’s not a lot of demand. The blocks are suspended at elevation until supply starts to fall short of demand, and when they’re lowered down their weight pulls cables that spin turbines and generate electricity.

Continue reading “Energy Vault’s First Grid-Scale Gravity Energy Storage System Is Near Complete” »

Page 56 of 279First5354555657585960Last