Toggle light / dark theme

Recent studies have revealed that electrons passing through chiral molecules exhibit significant spin polarization—a phenomenon known as chirality-induced spin selectivity. This effect stems from a nontrivial coupling between electron motion and spin within chiral structures, yet quantifying it remains challenging.

To address this, researchers at the Institute for Molecular Science (IMS) /SOKENDAI investigated an organic superconductor with chiral symmetry. They focused on nonreciprocity related to and observed an exceptionally large nonreciprocal transport in the , far exceeding theoretical predictions. Remarkably, this was found in an with inherently weak spin-orbit coupling, suggesting that chirality significantly enhances charge current-spin coupling with inducing mixed spin-triplet Cooper pairs.

The work is published in the journal Physical Review Research.

There’s a sensation that you experience—near a plane taking off or a speaker bank at a concert—from a sound so total that you feel it in your very being. When this happens, not only do your brain and ears perceive it, but your cells may also.

Technically speaking, is a simple phenomenon, consisting of compressional mechanical waves transmitted through substances which exist universally in the non-equilibrated material world. Sound is also a vital source of environmental information for living beings, while its capacity to induce physiological responses at the cell level is only just beginning to be understood.

Following on from previous work from 2018, a team of researchers at Kyoto University have been inspired by research in mechanobiology and body-conducted sound—the sound environment in —indicating that transmitted by sound may be sufficient to induce cellular responses.

To understand superconductors, researchers explore their behavior at the limits of superconductivity, such as at high temperature or under strong magnetic field. New experiments investigate superconductivity at the limits of thickness, finding unexpected vortex behavior in ultrathin films [1]. Using a high-resolution magnetic imaging technique, Nofar Fridman from the Hebrew University of Jerusalem and colleagues measured vortex sizes in superconducting samples of various thicknesses and found larger-than predicted vortices in films made up of six or fewer atomic layers. The results suggest that thin superconductors host two superconducting states: one in the bulk of the material, the other confined to the surface layers. This behavior challenges our present understanding of how superconductors behave.

When a superconductor is exposed to an external magnetic field, it generates electrical screening currents, which generate a counter magnetic field, explains team member Yonathan Anahory from the Hebrew University of Jerusalem. The net effect is the external field lines bend around the superconductor without penetrating the material.

However, the situation changes in thin superconducting films, where the material’s ability to completely expel magnetic fields is weakened. Instead of being fully excluded, the field enters the film through narrow columns, called vortices, around which superconducting screening currents flow. Inside each vortex, there is exactly one quantum of magnetic flux.

A breakthrough by researchers at The University of Manchester sheds light on one of nature’s most elusive forces, with wide-reaching implications for medicine, energy, climate modeling and more. The researchers have developed a method to precisely measure the strength of hydrogen bonds in confined water systems, an advance that could transform our understanding of water’s role in biology, materials science, and technology.

The work, published in Nature Communications, introduces a fundamentally new way to think about one of nature’s most important but difficult-to-quantify interactions.

Hydrogen bonds are the invisible forces that hold water molecules together, giving water its unique properties, from high boiling point to , and enabling critical biological functions such as protein folding and DNA structure. Yet despite their significance, quantifying in complex or confined environments has long been a challenge.

New research has found that variations in rock composition within oceanic plates, caused by ancient tectonic processes, can significantly affect the path and speed of these plates as they sink into Earth’s mantle.

At depths between 410 and 660 kilometers lies the mantle transition zone (MTZ), a key boundary layer that regulates the movement of material into the planet’s deeper interior. When subducting plates, those that dive beneath others, encounter large concentrations of basalt within the MTZ, their descent can slow down or even stall, rather than continuing smoothly into the lower mantle. While basalt-rich regions in the MTZ have been observed before, their origins have remained uncertain until now.

Andrew Iams saw something strange while looking through his electron microscope. He was examining a sliver of a new aluminum alloy at the atomic scale, searching for the key to its strength, when he noticed that the atoms were arranged in an extremely unusual pattern.

“That’s when I started to get excited,” said Iams, a materials research engineer, “because I thought I might be looking at a .”

Not only did he find quasicrystals in this , but he and his colleagues at the National Institute of Standards and Technology (NIST) found that these quasicrystals also make it stronger. They have published their findings in the Journal of Alloys and Compounds.