Toggle light / dark theme

RIKEN launches international initiative with Fujitsu and NVIDIA for “FugakuNEXT” development

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals. Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention towards QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and magnetic refrigeration.

Although theoreticians have long expected the establishment of antiferromagnetism in select QCs, it has yet to be directly observed. Experimentally, most magnetic iQCs exhibit spin-glass-like freezing behavior, with no sign of long-range magnetic order, leading researchers to question whether antiferromagnetism is even compatible with quasiperiodicity — until now.

In a groundbreaking study, a research team has finally discovered antiferromagnetism in a real QC. The team was led by Ryuji Tamura from the Department of Materials Science and Technology at Tokyo University of Science (TUS), along with Takaki Abe, also from TUS, Taku J. Sato from Tohoku University, and Max Avdeev from the Australian Nuclear Science and Technology Organisation and The University of Sydney. Their study was published in the journal Nature Physics on April 11, 2025.


Quasicrystals are intriguing materials with long-range atomic order that lack periodicity. It has been a longstanding question whether antiferromagnetism, while commonly found in regular crystals, is even possible in quasicrystals. In a new study, researchers have finally answered this question, providing the first definitive neutron diffraction evidence of antiferromagnetism in a real icosahedral quasicrystal. This discovery opens a new research area of quasiperiodic antiferromagnets, with potential applications in spintronics.

Hidden turbulence discovered in polymer fluids

Turbulence, the chaotic, irregular motion that causes the bumpiness we sometimes experience on an airplane, has intrigued scientists for centuries. At the Okinawa Institute of Science and Technology (OIST), researchers are exploring this phenomenon in a special class of materials known as complex fluids.

Wrinkles in atomically thin materials unlock ultraefficient electronics

Wrinkles can be an asset—especially for next-generation electronics. Rice University scientists have discovered that tiny creases in two-dimensional materials can control electrons’ spin with record precision, opening the path to ultracompact, energy-efficient electronic devices.

Weak points in diamond fusion fuel capsules identified

Scientists at the University of California San Diego have uncovered how diamond—the material used to encase fuel for fusion experiments at the National Ignition Facility (NIF) in Lawrence Livermore National Laboratory—can develop tiny structural flaws that may limit fusion performance.

At the NIF, powerful lasers compress diamond capsules filled with deuterium and tritium to the extreme pressures needed for . This process must be perfectly symmetrical to achieve maximum energy output.

By using a high-power pulsed laser to simulate these extreme conditions, researchers found that diamonds can form a series of defects, ranging from subtle crystal distortions to narrow zones of complete disorder, or amorphization. These imperfections can disrupt the implosion symmetry, which in turn can reduce energy yield or even prevent ignition.

Machine Learning Interatomic Potentials in Computational Materials

Machine learning interatomic potentials (MLIPs) have become an essential tool to enable long-time scale simulations of materials and molecules at unprecedented accuracies. The aim of this collection is to showcase cutting-edge developments in MLIP architectures, data generation techniques, and innovative sampling methods that push the boundaries of accuracy, efficiency, and applicability in atomic-scale simulations.

/* */