Toggle light / dark theme

A squishy, layered material that dramatically transforms under pressure could someday help computers store more data with less energy.

That’s according to a new study by researchers at Washington State University and the University of North Carolina at Charlotte that shows a hybrid zinc telluride-based material can undergo surprising structural changes when squeezed together like a molecular sandwich. Those changes could make it a strong candidate for , a type of ultra-fast, long-lasting data storage that works differently than the memory found in today’s devices and doesn’t need a constant power source.

The research was made possible by a X-ray diffraction system that was acquired in 2022. This specialized equipment lets researchers observe tiny structural changes in the material as they happened—all from WSU’s Pullman campus. Usually, these kinds of experiments require time at massive national facilities like the Advanced Light Source at Berkeley National Laboratory in California.

RIKEN scientists have discovered how to manipulate molybdenum disulfide into acting as a superconductor, metal, semiconductor, or insulator using a specialized transistor technique.

By inserting potassium ions and adjusting conditions, they could trigger dramatic changes in the material’s electronic state—unexpectedly even turning it into a superconductor or insulator. This new level of control over a single 2D material could unlock exciting breakthroughs in next-gen electronics and superconductivity research.

Unlocking versatility in a single material.

Scientists have unveiled a cutting-edge quantum microscope that allows them to observe how electrons interact with strange atomic vibrations in twisted graphene, including a newly revealed “phason.” This phenomenon could help explain mysterious behaviors like superconductivity in materials rotate

A UNSW study published today in Nature Communications presents an exciting step towards domain-wall nanoelectronics: a novel form of future electronics based on nano-scale conduction paths, and which could allow for extremely dense memory storage.

FLEET researchers at the UNSW School of Materials Science and Engineering have made an important step in solving the technology’s primary long-standing challenge of information stability.

Domain walls are “atomically sharp” separating regions of uniform in .

Essential for many industries ranging from Hollywood computer-generated imagery to product design, 3D modeling tools often use text or image prompts to dictate different aspects of visual appearance, like color and form. As much as this makes sense as a first point of contact, these systems are still limited in their realism due to their neglect of something central to the human experience: touch.

Fundamental to the uniqueness of physical objects are their tactile properties, such as roughness, bumpiness, or the feel of materials like wood or stone. Existing modeling methods often require advanced computer-aided design expertise and rarely support tactile feedback that can be crucial for how we perceive and interact with the physical world.

With that in mind, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have created a new system for stylizing 3D models using image prompts, effectively replicating both visual appearance and tactile properties. Their research is published on the arXiv preprint server.