Toggle light / dark theme

Quantum Breakthrough: Scientists Find “Backdoor” to 60-Year-Old Superconducting Mystery

A Copenhagen team has unlocked a clever “backdoor” into studying rare quantum states once thought beyond reach.

Scientists at the Niels Bohr Institute, University of Copenhagen, have discovered a new approach for investigating rare quantum states that occur within superconducting vortices. These states were first proposed in the 1960s, but confirming their existence has proven extremely challenging because they occur at energy levels too small for most experiments to detect directly.

This breakthrough was achieved through a mix of creative problem-solving and the advanced development of custom-made materials in the Niels Bohr Institute’s laboratories. The research findings have been published in Physical Review Letters.

Research examines how ripples affect nanoscopic materials

When materials are created on a nanometer scale — just a handful of atoms thick — even the thermal energy present at room temperature can cause structural ripples. How these ripples affect the mechanical properties of these thin materials can limit their use in electronics and other key systems.

New research validates theoretical models about how elasticity is scale-dependent — in other words, the elastic properties of a material are not constant, but vary with the size of the piece of material.

Assistant Professor Jian Zhou, PhD ’18, collaborated with researchers from Argonne National Laboratory, Harvard University, Princeton University and Penn State University for a recently published paper in the Proceedings of the National Academy of Sciences.

Using a semiconductor manufacturing process, the team created alumina structures 28 nanometers thick (more than 1,000 times thinner than the diameter of a human hair) on the silicon wafer with thermal-like static ripples, then tested them with lasers to measure their behavior. To remove possible stress to the material that could affect the results, cantilevers held the wafers during testing.


Understanding how thin materials behave is key to electronics and other technology.

New carbon material sharpens proton beams, potentially boosting cancer treatment precision

Researchers from the National University of Singapore (NUS) have developed a groundbreaking carbon membrane that could revolutionise proton therapy for cancer patients, and advance technologies in medicine and other areas such as energy devices and flexible electronics.

The new carbon material which is just a single atom thick shows incredible promise in enabling high-precision proton beams. Such beams are key to safer and more accurate proton therapy for cancer treatment. The new material, called the ultra-clean monolayer amorphous carbon (UC-MAC), could outperform best in class materials like graphene or commercial carbon films.

The research was led by Associate Professor Lu Jiong and his team from the NUS Department of Chemistry, in collaboration with international partners.

Scientists design superdiamonds with theoretically predicted hexagonal crystal structure

The brilliantly shiny diamond is more than just pretty; it’s one of the hardest minerals on Earth, with a name derived from the Greek word adámas, meaning unbreakable. Scientists have now engineered a harder form of diamond known as bulk hexagonal diamond (HD)—a crystalline structure that has been theorized for over half a century to have physical properties superior to those of conventional diamond.

In a study published in Nature, researchers from China synthesized bulk hexagonal diamond, ranging from 100-µm-sized to mm-sized, with a highly ordered structure by compressing and heating high-quality graphite under pressure conditions as uniform as possible.

The designed material, which was recoverable under ambient conditions, unveiled the previously elusive structural world of HD, opening new avenues for exploring its potential as a technologically superior material.

/* */