Menu

Blog

Archive for the ‘materials’ category: Page 200

Jun 4, 2020

Metasurface opens world of polarization

Posted by in categories: biotech/medical, materials

Polarization, the direction in which light vibrates, is invisible to the human eye. Yet, so much of our optical world relies on the control and manipulation of this hidden quality of light.

Materials that can manipulate the polarization of —known as birefringent materials—are used in everything from digital alarm clocks to medical diagnostics, communications and astronomy.

Just as light’s polarization can vibrate along a straight line or an ellipse, materials can also be linearly or elliptically birefringent. Today, most birefringent materials are intrinsically linear, meaning they can only manipulate the polarization of light in a limited way. If you want to achieve broad polarization manipulation, you need to stack multiple birefringent materials on top of one another, making these devices bulky and inefficient.

Jun 4, 2020

The truth about graphene

Posted by in category: materials

The truth about graphene. Ever since it was first discovered in 2004, graphene has been hailed as one of the most important breakthroughs in materials since the plastics revolution more than a century ago. The early predictions were that graphene would almost immediately enable the kinds of products and technologies that we’re used to seeing in sci-fi movies. Cut to more than a decade and a half later and that still hasn’t happened. Not even close. With opinions split between people overhyping graphene or calling it a massive disappointment, it’s time we got to the truth of what is really happening with this so-called ‘wonder material’.

▻ Watch the truth about solid state batteries — how close are they?: https://youtu.be/x8FEyaZxqAU

Continue reading “The truth about graphene” »

Jun 2, 2020

Coatings for shoe bottoms could improve traction on slick surfaces

Posted by in category: materials

Inspired by the Japanese art of paper cutting, MIT engineers have designed a friction-boosting material that could be used to coat the bottom of your shoes, giving them a stronger grip on ice and other slippery surfaces.

The researchers drew on kirigami, a variation of origami that involves cutting paper as well as folding it, to create the new coating. Laboratory tests showed that when people wearing kirigami-coated shoes walked on an icy surface, they generated more friction than the uncoated shoes.

Incorporating this coating into shoes could help prevent dangerous falls on ice and other hazardous surfaces, especially among the elderly, the researchers say.

Jun 1, 2020

‘Black nitrogen’: Researchers discover new high-pressure material and solve a puzzle of the periodic table

Posted by in categories: chemistry, materials

In the periodic table of elements there is one golden rule for carbon, oxygen and other light elements: Under high pressures, they have similar structures to heavier elements in the same group of elements. But nitrogen always seemed unwilling to toe the line. However, high-pressure chemistry researchers of the University of Bayreuth have disproved this special status. Out of nitrogen, they created a crystalline structure which, under normal conditions, occurs in black phosphorus and arsenic. The structure contains two-dimensional atomic layers, and is therefore of great interest for high-tech electronics. The scientists have presented this “black nitrogen” in Physical Review Letters.

Nitrogen—an exception in the periodic system?

When you arrange the chemical elements in ascending order according to their number of protons and look at their properties, it soon becomes obvious that certain properties recur at large intervals (periods). The brings these repetitions into focus. Elements with similar properties are placed one below the other in the same column, and thus form a group of elements. At the top of a column is the element that has the fewest protons and the lowest weight compared to the other group members. Nitrogen heads element group 15, but was previously considered the “black sheep” of the group. The reason: In earlier experiments, showed no structures similar to those exhibited under normal conditions by the of this group—specifically, phosphorus, arsenic and antimony. Instead, such similarities are observed at high pressures in the neighboring groups headed by carbon and oxygen.

May 31, 2020

Squeezed graphene becomes a superconductor

Posted by in category: materials

Pressure puts a new twist on magic-angle bilayers.

May 31, 2020

Room Temperature Superconductor Breakthrough at Oak Ridge National Laboratory

Posted by in categories: materials, particle physics

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades — a feature that could possibly facilitate superconductivity at or near room temperature and pressure.

Such a superconducting material, carrying electricity without any energy loss due to resistance, would revolutionize energy efficiency in a broad range of consumer and industrial applications.

The scientists conducted neutron scattering experiments at the Department of Energy’s Oak Ridge National Laboratory on samples of zirconium vanadium hydride at atmospheric pressure and at temperatures from −450 degrees Fahrenheit (5 K) to as high as −10 degrees Fahrenheit (250 K) — much higher than the temperatures where superconductivity is expected to occur in these conditions.

May 31, 2020

High-quality graphene foams are made from organic waste

Posted by in category: materials

Process is cheap and more environmentally friendly, say researchers.

May 30, 2020

We publish scientific and engineering peer-reviewed academic journals and book series | Scientific.Net

Posted by in categories: engineering, materials

Research of landmine detection using terahertz technology.


Scientific. Net, the trademark of Trans Tech Publications Ltd., is one of the largest web resources, publishes peer-reviewed academic journals and book series in field of materials science and engineering.

May 30, 2020

Smart metamaterials that sense and reprogram themselves

Posted by in categories: engineering, materials

Materials scientists aim to engineer intelligence into the fabric of materials or metamaterials for programmable functions. Engineering efforts can vary from passive to active forms to develop programmable metasurfaces using dynamic and arbitrary electromagnetic (EM) wavefields. Such metasurfaces, however, require manual control to switch between functions. In a new study now published on Light: Science & Applications, Qian Ma and an interdisciplinary research team in the State Key Laboratory, Cyberspace Science and Technology, and the Department of Electronics in China engineered a smart metasurface for self-adaptive programmability.

May 30, 2020

Teslaphoresis-activated self-assembling carbon nanotubes look even cooler than they sound

Posted by in categories: materials, nanotechnology

Circa 2016


Not all important scientific research is cool looking, or has a cool name. But now and then you get something with both. These self-assembling carbon nanotubes are created with a process called Teslaphoresis. If you’ve read a more impressive-sounding sentence today, I’d like to hear it.

Even the lab of Rice University chemist Paul Cherukuri looks like a proper mad scientist’s lair. But don’t let the flashy trappings fool you: this is a very significant development.

Continue reading “Teslaphoresis-activated self-assembling carbon nanotubes look even cooler than they sound” »