Toggle light / dark theme

Laser-engineered nanowire networks could unlock new material manufacturing

A breakthrough development in nanofabrication could help support the development of new wireless, flexible, high-performance transparent electronic devices.

Researchers from the University of Glasgow’s James Watt School of Engineering have developed a new method of interfacial imprinting ultra-thin nanowires onto bendable, transparent polymeric substrates.

The team’s paper, titled “Laser-Engineered Interfacial-Dielectrophoresis Aligned Nanowire Networks for Transparent Electromagnetic Interference Shielding Films,” is published in ACS Nano.

Scientists Solve a Hidden Battery Cracking Mystery That Shortens Lifespan and Raises Fire Risk

A new study shows that promising single-crystal battery materials degrade for reasons scientists hadn’t fully recognized before. Scientists at Argonne National Laboratory and the UChicago Pritzker School of Molecular Engineering (UChicago PME) have identified the source of a long-standing problem

New ‘cloaking device’ concept shields electronics from disruptive magnetic fields

University of Leicester engineers have unveiled a concept for a device designed to magnetically “cloak” sensitive components, making them invisible to detection.

A magnetic cloak is a device that hides or shields an object from external magnetic fields by manipulating how these flow around an object so that they behave as if the object isn’t there.

In Science Advances, the team of engineers demonstrate for the first time that practical cloaks can be engineered using superconductors and soft ferromagnets in forms that can be manufactured.

Scientists crack the atomic code behind single-photon quantum emitters

This achievement removes one of the biggest roadblocks in quantum materials science and brings practical quantum devices much closer to reality.

Quantum emitters work by releasing single photons, individual packets of light, on demand. This ability is critical because quantum technologies rely on absolute control over light and information.

The problem has always been visibility and control. The exact atomic defects responsible for these emitters are incredibly small and difficult to observe. Scientists could either study how they emit light or examine their atomic structure—but not both at the same time.

Organic materials conduct ions in solids as easily as in liquids thanks to flexible sidechains

Normally, when liquids solidify, their molecules become locked in place, making it much harder for ions to move and leading to a steep decrease in ionic conductivity. Now, scientists have synthesized a new class of materials, called state-independent electrolytes (SIEs), that break that rule.

The paper is published in the journal Science.

Super strain-resistant superconductors

Superconductors are materials that can conduct electricity with zero resistance, usually only at very low temperatures. Most superconductors behave according to well-established rules, but strontium ruthenate, Sr₂RuO₄, has defied clear understanding since its superconducting properties were discovered in 1994. It is considered one of the cleanest and best-studied unconventional superconductors, yet scientists still debate the precise structure and symmetry of the electron pairing that gives rise to its remarkable properties.

One powerful way to identify the underlying superconducting state is to measure how the superconducting transition temperature, or Tc, changes under strain, since different superconducting states respond differently when a crystal is stretched, compressed, or twisted.

Many earlier experiments, especially ultrasound studies, suggested that Sr₂RuO₄ might host a two-component superconducting state, a more complex form of superconductivity that can support exotic behaviors such as internal magnetic fields or multiple coexisting superconducting domains. But a genuine two-component state is expected to respond strongly to shear strain.

Scientists Identify Promising New Magnetic Material for the AI Era

A newly validated magnetic state could open a path toward ultra-fast, high-density memory for future AI and data-center technologies. A collaborative team of researchers from NIMS, the University of Tokyo, Kyoto Institute of Technology, and Tohoku University has shown that thin films of ruthenium

Unveiling the Role of Graphene in Enhancing the Mechanical Properties of Electrodeposited Ni Composites

Graphene holds significant promise as an ideal reinforcing phase. However, its tendency to irreversibly aggregate and its unclear impact on electrodeposition mechanisms have hindered the full exploitation of its advantages for enhancing material mechanical properties. In this study, we produced a graphene/Ni composite reinforced with reduced graphene oxide (rGO) via a simple, scalable, and cost-effective electrodeposition approach. The incorporation of graphene not only raised the cathodic polarization potential but also enhanced the transport of ions. As a result, the presence of rGO significantly influenced the grain size, grain distribution, and the proportion of growth twins-3(111). Compared with Ni, the graphene/Ni composite exhibited improvements of 14.8% in strength and 16.8% in fracture elongation.

Subtle twist in materials prompts surprising electromagnetic behavior

Materials react differently to electric and magnetic fields, and these reactions are known as electromagnetic responses. In many solid materials, unusual electromagnetic responses have been known to only emerge when specific symmetries are broken.

Researchers at Rutgers University, Pohang University of Science and Technology, National Taiwan University and University of Michigan recently observed new electromagnetic effects in ferro-rotational materials, which they reported in a paper in Nature Physics. These are solid materials in which individual crystals collectively rotate, and form ordered rotational domains, without breaking spatial inversion (I) or time-reversal (T) symmetry.

“Twisting is ubiquitous in nature, appearing in DNA structures, climbing vines, and even in quartz crystals that exhibit piezoelectricity. Such twisting is typically three-dimensional and is described by chirality, characterized by left-or right-handedness,” Sang-Wook Cheong, senior author of the paper told Phys.org.

/* */