Menu

Blog

Archive for the ‘materials’ category: Page 142

May 13, 2020

World’s Hardest Concrete With Improved Impact Resistance for Disaster Prevention

Posted by in categories: engineering, materials

A research team including Kanazawa University tests the impact response of the world’s hardest concrete.

Concrete is the most widely used building material in the world and consequently is being continuously developed to fulfill modern-day requirements. Efforts to improve concrete strength have led to reports of porosity-free concrete (PFC), the hardest concrete tested to date. Some of the basic properties of PFC have already been explored, and now a team including Kanazawa University has probed the impact response of this innovative material. Their findings are published in International Journal of Civil Engineering.

Ultra-high-strength concrete offers significant advantages including reducing the weight of large structures and protecting them against natural disasters and accidental impacts. PFC is an ultra-high-strength concrete whose properties can be further enhanced by incorporating steel fibers.

May 13, 2020

Mechanical oscillations cause iron to become transparent to gamma rays

Posted by in categories: materials, quantum physics

“Iron nuclei can be made transparent to gamma rays that they would normally absorb using a new technique called “acoustically induced transparency” (AIT). This feat was achieved by physicists in the US and Russia, who vibrated an iron Mössbauer absorber using a piezoelectric transducer. The researchers believe the effect could help to control the emission of radiation from nuclei, allowing more accurate atomic clocks and other quantum optical devices to be created. The technique could even be used to slow the passage of gamma rays through a material.”


“Acoustically induced transparency” created by vibrating solid absorber.

May 12, 2020

Stretchy cement makes buildings “immune to earthquakes”

Posted by in category: materials

Circa 2017 face_with_colon_three


Researchers at the University of British Columbia have developed a form of concrete that is able to stretch without breaking, making it better able to resist the kind of forces produced by earth movements.

May 11, 2020

How Earthquake-Proof Buildings Are Designed

Posted by in category: materials

Circa 2019


Earthquakes cause billions in damages and thousands of deaths a year. Here are the materials and technology used to design earthquake-proof buildings.

May 11, 2020

For the first time, scientists can see how the brain records our memories as we sleep

Posted by in categories: materials, neuroscience

(CNN) — Scientists have long known our brains need sleep to review the day’s events and transfer them into longer-term memories. Students are often told to study just before turning in to maximize their recall of material for a test the next day.

But the exact way in which the brain stores our memories is poorly understood.

Now for the first time, tiny microelectrodes planted inside the brains of two people show just how the brain’s neurons fire during sleep to “replay” our short-term memories in order to move them into more permanent storage. The study was published Tuesday in the journal Cell Reports.

May 10, 2020

World Is Running Out Of Sand — Why There’s Now A Black Market For It

Posted by in categories: entertainment, materials

👽 We are running out of sand, Find out why.

Fyodor R.

Continue reading “World Is Running Out Of Sand — Why There’s Now A Black Market For It” »

May 9, 2020

Temporal Supersymmetry Breakthrough Paves Way to Omnidirectional Invisible Materials

Posted by in categories: innovation, materials

A team at UPV’s Nanophotonics Technology Center has discovered a new fundamental symmetry in electromagnetism, acoustics and elasticity laws: a temporal supersymmetry.

According to Carlos García Meca and Andrés Macho Ortiz, researchers at NTC-UPV, this new symmetry allows the conservation of the linear moment between dramatically different physical systems. This paves the way to designing pioneering optical, acoustic and elastic devices, including invisible omnidirectional, polarization-independent materials, ultra-compact frequency shifters, isolators and pulse-shape transformers.

“These devices allow us to unusually modify different properties of light signals inside photonic circuits to process the spread of information. This is vital in communication systems. Moreover, we can adapt the functionality of those devices to the requirements at any time, as they are dynamically configurable,” explained Carlos García Meca.

May 9, 2020

This “Mutant Enzyme” Can Break Down Plastic Bottles in Hours

Posted by in category: materials

The cost of producing the enzyme was just four percent of the cost of making brand new plastic using oil.

May 8, 2020

Israeli disinfectant kills 100% of viruses, bacteria

Posted by in categories: biotech/medical, materials

A state-of-the-art disinfectant developed by the Israel Institute for Biological Research and distributed by Tera Novel is capable of killing 100% of bacteria, viruses, molds and some fungi, including the novel coronavirus.

“Our disinfectant works in a very different way from many others,” Tera Novel chairwoman Karen Cohen Khazon told The Jerusalem Post. “We also use hypochlorite, but in a very high [concentration] and we add some [additional ingredients] so that anywhere the disinfectant is sprayed, it becomes a very white film of gel which keeps the [material] on the surface for a while.”

May 7, 2020

Alloy clear for use in high-temperature reactors

Posted by in categories: materials, nuclear energy

Alloy 617 — a combination of nickel, chromium, cobalt and molybdenum — has been approved by the American Society of Mechanical Engineers (ASME) for inclusion in its Boiler and Pressure Vessel Code. This means the alloy, which was tested by Idaho National Laboratory (INL), can be used in proposed molten salt, high-temperature, gas-cooled or sodium reactors. It is the first new material to be added to the Code in 30 years.

The Boiler and Pressure Vessel Code lays out design rules for how much stress is acceptable and specifies the materials that can be used for power plant construction, including in nuclear power plants. Adhering to these specifications ensures component safety and performance.

INL spent 12 years qualifying Alloy 617, with a USD15 million investment from the US Department of Energy. A team at INL, in collaboration with groups at Argonne National Laboratory and Oak Ridge National Laboratory, as well as industry consultants and international partners, has now received approval from ASME for the alloy’s inclusion in the Code. Designers working on new high-temperature nuclear power plant concepts now have more options when it comes to component construction materials.