Toggle light / dark theme

The body constantly replaces used materials and breaks them down for disposal. MPS VI patients are missing an enzyme essential to breaking down the mucopolysaccharide dermatan sulfate. These materials remain stored in the body’s cells, causing progressive damage. Babies may show little sign of the disease (so better testing is needed), but as cells sustain damage, symptoms start to appear.

Its sad when people have disorders that have a low life expectancy in their 20’s and 30’s EnzymeMaroteaux-Lamy syndrome Is one such affliction, however their is enzyme replacement treatment, but more needs to be done.

Enzyme Replacement Treatment.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752495/


Microplastics are a growing environmental problem, but now researchers in Korea have developed a new water purification system that can filter out these tiny fragments, as well as other pollutants, very quickly and with high efficiency.

Given the ubiquity of plastic in the modern world, it’s not surprising that tiny flakes of the stuff can be found basically everywhere on Earth, even in environments thought to be pristine. Microplastics have been detected from pole to pole, from the deepest ocean trenches to the tallest mountain peaks, and are making their way up the food chain all the way to humans.

Various materials are being tested to help filter out microplastics, including magnetic “nanopillars,” nanocellulose, semiconductor wires, and filtration columns containing sand, gravel and biofilms. Now, researchers at Daegu Gyeongbuk Institute of Science and Technology (DGIST) in South Korea have found promise with a new design.

It’s easy to think of Earth’s geomagnetic poles as features that are set in stone (or ice), but both poles are not stationary and remain in a permanent state of flux. Since it was first documented by scientists in the 1830s, the North Magnetic Pole has wandered some 2,250 kilometers (1,400 miles) across the upper stretches of the Northern Hemisphere from Canada towards Siberia. Between 1990 and 2005, the rate of this movement accelerated from less than 15 kilometers per year to around 50 to 60 kilometers per year.

A study, published in the journal Nature Geoscience, argues the changes could be explained by the to-ing and fro-ing between two magnetic “blobs” of molten material in the planet’s interior, causing a titanic shift of its magnetic field.

The North Magnetic Pole is the point at which Earth’s magnetic field points vertically downwards, dictated by molten iron that’s sloshing around Earth’s interior through convection currents. The recent shift towards Siberia, it seems, is caused by a blip in the pattern of flow in Earth’s interior that occurred between 1970 and 1999. The change resulted in the Canadian blob becoming elongated and losing its influence on the magnetosphere, causing the pole to zoom toward Siberia.

Year 2021 face_with_colon_three


Spider silk is one of nature’s most impressive materials, exhibiting impressive strength and toughness. Now, researchers at Washington University in St. Louis claim to have created an artificial version that can outperform some natural spider silks.

This isn’t the first rodeo for this research team – back in 2018 they developed a synthetic spider silk that was about on par with the real thing, in terms of tensile strength, extensibility and toughness. To do so, they spliced silk-producing genes into bacteria, and tweaked them so that proteins in the silk would fuse together to make a stronger, tougher material.

For the new study, the team built on this prior work to not just match natural spider silk but to surpass it. The key component is beta-nanocrystals, which boost the material’s strength but are hard to reproduce synthetically.

The world’s best artists can take a handful of differently colored paints and create a museum-worthy canvas that looks like nothing else. They do so by drawing upon inspiration, knowledge of what’s been done in the past and design rules they learned after years in the studio.

Chemists work in a similar way when inventing new compounds. Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University and The University of Chicago have developed a new method for discovering and making new with two or more elements.

“We expect that our work will prove extremely valuable to the chemistry, materials and condensed matter communities for synthesizing new and currently unpredictable materials with exotic properties,” said Mercouri Kanatzidis, a chemistry professor at Northwestern with a joint appointment at Argonne.