Archive for the ‘materials’ category: Page 11

Jul 27, 2023

Astronomers reveal new features of galactic black holes

Posted by in categories: cosmology, materials

Black holes are the most mysterious objects in the universe, with features that sound like they come straight from a sci-fi movie.

Stellar-mass with masses of roughly 10 suns, for example, reveal their existence by eating materials from their companion stars. And in some instances, accumulate at the center of some galaxies to form bright compact regions known as quasars with masses equal to millions to billions of our sun. A subset of accreting stellar-mass that can launch jets of highly magnetized plasma are called microquasars.

An international team of scientists, including UNLV astrophysicist Bing Zhang, reports in Nature on a dedicated observational campaign on the galactic microquasar dubbed GRS 1915+105. The team revealed features of a microquasar system that have never before been seen.

Jul 26, 2023

A nano switchable polar column system that allows high-density data storage

Posted by in categories: computing, materials

In today’s world of digital information, an enormous amount of data is exchanged and stored on a daily basis.

In the 1980s, IBM unveiled the first hard drive—which was the size of a refrigerator—that could store 1 GB of data, but now we have memory devices that have a thousand-fold greater data-storage capacity and can easily fit in the palm of our hand. If the current pace of increase in is any indication, we require yet newer data recording systems that are lighter, have low environmental impact, and, most importantly, have higher data storage density.

Recently, a new class of materials called axially polar-ferroelectric columnar liquid crystals (AP-FCLCs) has emerged as a candidate for future high-density memory storage materials. An AP-FCLC is a liquid crystal with a structure of parallel columns generated by , which have polarization along the column axis.

Jul 26, 2023

Breaking Superconductor News

Posted by in category: materials

Jul 26, 2023

Researchers discover mysterious interstellar radio signal reaching Earth: “Extraordinary”

Posted by in categories: materials, space travel

Mysterious radio wave pulses from deep in space have been hitting Earth for decades, but the scientists who recently discovered them have no concrete explanation for the origin of the signals.

For 35 years, the strange blasts of energy in varying levels of brightness have occurred like clockwork approximately every 20 minutes, sometimes lasting for five minute intervals. That’s what Curtin University astronomers from the International Centre for Radio Astronomy Research (ICRAR) concluded in research published last week in the journal Nature.

The discovery of the signal, which researchers named GPMJ1839-10, has the scientists baffled. Believed to be coming from around 15,000 light years away from Earth, the signal has been occurring at intervals and for a period of time previously thought to be impossible.

Jul 26, 2023

Strong as Glass

Posted by in categories: biotech/medical, materials

Materials that are both strong and lightweight could improve everything from cars to body armor. But usually, the two qualities are mutually exclusive. Now, University of Connecticut researchers and colleagues have developed an extraordinarily strong, lightweight material using two unlikely building blocks: DNA and glass.

“For the given density, our material is the strongest known,” says Seok-Woo Lee, a materials scientist at UConn. Lee and colleagues from UConn, Columbia University, and Brookhaven National Lab report the details on July 19 in Cell Reports Physical Science.

Strength is relative. Iron, for example, can take 7 tons of pressure per square centimeter. But it’s also very dense and heavy, weighing 7.8 grams/cubic centimeter. Other metals, such as titanium, are stronger and lighter than iron. And certain alloys combining multiple elements are even stronger. Strong, lightweight materials have allowed for lightweight body armor, better medical devices and made safer, faster cars and airplanes. The easiest way to extend the range of an electric vehicle, for example, is not to enlarge the battery but rather make the vehicle itself lighter without sacrificing safety and lifetime. But traditional metallurgical techniques have reached a limit in recent years, and materials scientists have had to get even more creative to develop new lightweight high strength materials.

Jul 26, 2023

DARPA will soon make strong and reusable scrap wood

Posted by in categories: materials, sustainability

It turns out there’s a lot of scrap wood produced by the US Army. According to the US Army Corps of Engineers, more than 80 percent of solid waste produced at the Department of Defense (DoD) forward operating bases consists of scrap wood, cardboard, and paper. This equates to almost 13 pounds of waste per soldier per day that could be reused if handled properly, reducing garbage and supplying useful materials for construction.

DARPA’s new Waste Upcycling for Defense (WUD) program aims to produce a process for turning scrap wood, cardboard, and paper into lightweight, strong, and sustainable materials for reuse in a variety of DoD environments.

Jul 26, 2023

Simulating Spacetime with Quantum Mechanical Materials

Posted by in categories: materials, quantum physics

At the annual APS Division of Atomic, Molecular and Optical Physics meeting, physicists made the case for a new way of modeling a universe.

Jul 26, 2023

First Room-Temperature Ambient-Pressure Superconductor Achieved, Claim Scientists

Posted by in category: materials

South Korean scientists have announced the development of a room-temperature ambient-pressure superconductor. If the claim is verified, this will change the world. Superconductors transmit electricity without resistance and have a series of magnetic properties that make them invaluable in technological applications. Usually, superconductors need to be cooled down to very low temperatures. A superconductor capable of working outside the lab in regular conditions would be revolutionary.

However, the conditional clauses in the first paragraph are necessary. There have been previous claims of room-temperature superconductivity that have not panned out. The researchers uploaded a paper to arXiv, and it is unclear if it was submitted for peer review to a journal. IFLScience has emailed them to learn more about the research and the new material, which is called modified lead-apatite or LK-99.

One crucial aspect of superconductivity is critical temperature, the temperature below which the material becomes superconductive. The value stated for LK-99 is 127°C (261°F), meaning it could easily be employed in all environments on Earth. If this is confirmed, it would not be the only room-temperature superconductor. But it would be the first to not require enormous pressures to work.

Jul 26, 2023

Science Cast

Posted by in categories: materials, science

Room Temperature and Ambient Pressure Superconductor? We shall see. But video is hopeful, currents are practical…

Increase your recognition in the scientific world with short video-casts.

Jul 25, 2023

‘Strange metal’ sends quantum researchers in circles

Posted by in categories: materials, quantum physics

A Yale-led team of physicists has discovered a circular pattern in the movement of electrons in a group of quantum materials known as “strange metals.”

Page 11 of 227First89101112131415Last