Declining Menin in the hypothalamus sparks inflammation and accelerates aging. Boosting Menin or supplementing with D-serine can restore memory, learning, and even physical vitality in older mice.
The future of pacemaker technologies — wade demmer — VP, R&D, medtronic.
Wade Demmer is Vice President of Research & Development at Medtronic where he is responsible for the development of new generations of pacemakers (https://www.medtronic.com/en-us/l/patients/treatments-therap…ers.html). With extensive expertise in medical technology and innovation, he leads the company’s R&D efforts to develop cutting-edge healthcare solutions and is dedicated to advancing medical advancements that improve patient outcomes and transform healthcare delivery.
Wade began his career at Intel, where he gained valuable experience in technology development and engineering. Building on his technical expertise, he transitioned into the medical device industry, bringing a strong innovation-driven mindset to healthcare solutions.
Wade is best known for his pioneering work on pacemakers, where he contributed to the design and development of advanced cardiac pacing technologies. His innovative approaches have helped improve the reliability, longevity, and patient comfort of pacemaker devices, significantly impacting the field of cardiac care.
Wade received his Bachelor of Engineering (BEng), with a focus on Computer Engineering, from Iowa State University, and his MBA from University of Minnesota Carlson School of Management.
What is the secret of supercentenarians? While there is no magical “elixir of life” that allows us to live forever, this incredibly rare group of people who live to be 110 years or older appears to have some biological advantage. To identify the factors that underlie extreme longevity, scientists conducted a comprehensive study of Maria Branyas, who was the world’s oldest verified living person at the time of the study.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.
Clearly Filtered Water Filter: https://get.aspr.app/SHoPY
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Research led by The Hong Kong Polytechnic University finds that regional fat distribution exerts distinct effects on brain structure, connectivity and cognition, revealing patterns not explained by body mass index (BMI).
Obesity has been associated with structural and functional changes in the brain, including reductions in gray matter, disruptions in white matter and impaired connectivity, which have been associated with cognitive decline.
Previous studies frequently used BMI as the central measure of obesity, a highly generalized metric that cannot capture the biological differences in fat depots. Adipose tissue in different body regions is known to affect metabolic and inflammatory pathways differently, and earlier work has suggested that visceral (around organs in the abdominal cavity) and leg fat contribute unequally to disease risk.
Conquering aging via TRCS — the telomere DNA AND ribosomal DNA co-regulation model for cell senescence — bilu huang — CSO, fuzhuang therapeutics.
Bilu Huang (https://biluhuang.com/) is a visionary scientist dedicated to finding solutions to some of the most pressing challenges facing humanity. His interdisciplinary work spans multiple fields, including biological aging, dinosaur extinction theories, geoengineering for carbon removal, and controlled nuclear fusion technology.
Born in Sanming City, Fujian Province, Huang is an independent researcher whose knowledge is entirely self-taught. Driven by curiosity and a relentless pursuit of scientific exploration, he has achieved numerous research results through his dedication and passion for science.
As a talented theoretical gerontologist, he proposed the Telomere DNA and ribosomal DNA co-regulation model for cell senescence (TRCS) and he is now using this latest theory to develop biotechnology to rejuvenate cells which will be used to completely cure various age-related degenerative diseases and greatly extend human life at Fuzhuang Therapeutics (https://lab.fuzhuangtx.com/en/).
#Aging #Longevity #BiluHuang #FuzhuangTherapeutics #TelomereDNAAndRibosomalDNACoRegulationModelForCell #Senescence #TRCS #DinosaurExtinctionResearch #CarbonRemovalTechnology #ControlledNuclearFusion #TelomereDNA #RibosomalDNA #CellularAging #GeneticProgram #Telomere #P53
Every time a eukaryotic cell divides, it faces a monumental challenge: It must carefully duplicate and divide its genetic material (chromosomes) equally, and then rebuild the nuclear envelope around the separated halves. If this process goes wrong, the resulting nuclei can be misshapen or disorganized—features often seen in cancer and aging-related diseases.
A new study from researchers at the Indian Institute of Science (IISc) and Université Paris-Saclay reveals how a key enzyme called Aurora A helps cells pull off this feat. The findings are published in The EMBO Journal.
In dividing cells, structures called spindle poles (or centrosomes) grow in size to generate the microtubule ‘tracks’ that pull chromosomes apart. Once this job is done, the spindle poles must shrink and disassemble so that the nuclear envelope can reform around the separated chromosomes.