Toggle light / dark theme

PROSPR: The Government Initiative To Extend Healthy Lifespan In America

“The ultimate goal is to extend healthspan—meaning the number of years aging adults live healthy lives and enjoy overall well-being by compressing the frailty and disability that comes with aging into a shorter duration of time near the end of life,” says Andrew Brack, PhD, the PROSPR Program Manager.

The new venture will be building on some of the work that the National Institute of Aging (NIH) has been working on and will be working in collaboration with various organizations in the biotechnology industry as well as some unspecified regulators to accelerate the development, testing, and availability of new therapeutic that targets human healthspan.

It is hoped that the new initiative, along with positively impacting the healthspan of Americans, will also help to enhance the economy across the nation.

The Hypothalamic Hotspot: Revealing the Brain’s Secret to Aging

Largest brain aging study points to possible connections between diet, inflammation, and brain health.

Scientists at the Allen Institute have discovered specific types of brain cells in mice that experience significant changes as they age. They also identified a distinct “hotspot” where many of these changes are concentrated. Published today (January 1) in Nature, these findings could lead to the development of therapies aimed at slowing or managing the brain’s aging process.

Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice

Sensitive cells: Scientists discovered dozens of specific cell types, mostly glial cells, known as brain support cells, that underwent significant gene expression changes with age. Those strongly affected included microglia and border-associated macrophages, oligodendrocytes, tanycytes, and ependymal cells.

Inflammation and neuron protection: In aging brains, genes associated with inflammation increased in activity while those related to neuronal structure and function decreased.

Aging hot spot: Scientists discovered a specific hot spot combining both the decrease in neuronal function and the increase in inflammation in the hypothalamus. The most significant gene expression changes were found in cell types near the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and neurons known for their role in food intake, energy homeostasis, metabolism, and how our bodies use nutrients. This points to a possible connection between diet, lifestyle factors, brain aging, and changes that can influence our susceptibility to age-related brain disorders.

Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice.


A comprehensive single-cell RNA sequencing study delineates cell-type-specific transcriptomic changes in the brain associated with normal ageing that will inform the investigation into functional changes and the interaction of ageing and disease.

Key players in brain aging: New research identifies age-related damage on a cellular level

Scientists at the Allen Institute have identified specific cell types in the brain of mice that undergo major changes as they age, along with a specific hot spot where many of those changes occur. The discoveries, published in the journal Nature, could pave the way for future therapies to slow or manage the aging process in the brain.

The scientists discovered dozens of specific cell types, mostly , known as brain support cells, that underwent significant gene expression changes with age. Those strongly affected included microglia and border-associated macrophages, oligodendrocytes, tanycytes, and ependymal cells.

They found that in aging brains, genes associated with inflammation increased in activity while those related to neuronal structure and function decreased.

Towards Tissue Regeneration: Scientists Engineer Self —Organizing Cells

Researchers have developed a method to direct stem cells to form specific structures. By triggering the expression of specific genes in mouse embryonic stem cells, synthetic organizer cells were created, which can assemble in specific ways and carry out various phsyiological functions. This work is an important step on the road to eventually using synthetic cells to repair damaged tissues or regenerate organs. The research has been reported in Cell.

The researchers created synthetic organizer cells that could generate a structure like a mouse body, from head to tail, that underwent processes that were similar to those in mouse embryonic development. Another type of synthetic organizer cell was used to produce a structure that was similar to a heart, and featured a central chamber. This synthetic, heart-like structure also had a network of blood vessels and beat regularly.

Can We Stop Brain Aging? Scientists Uncover Mitochondrial Key

New research identifies E-TCmito as a key link between neuronal activity and mitochondrial function, highlighting its potential to address cognitive decline in aging and diseases like Alzheimer’s.

New research in mice has identified a critical mechanism that connects neuronal activity with mitochondrial function, offering insight into potential strategies to address age-related cognitive decline. Mitochondria, essential for meeting the energy needs of active neurons, generate adenosine triphosphate (ATP) primarily through oxidative phosphorylation (OXPHOS).

As mammals age, the efficiency of mitochondrial metabolism in the brain declines, significantly impacting neuronal and network function. The disruption of the OXPHOS pathway contributes to oxidative stress and mitochondrial dysfunction, exacerbating these challenges.

Dasatinib + Quercetin: Longevity Biohacker Kenneth Scott’s Experience

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

How Does Space Affect the Brain? Groundbreaking ISS Experiment Reveals Surprising Insights

Microgravity is known to affect muscles, bones, the immune system, and cognition, but its specific effects on the brain remain largely unexplored. To investigate this, scientists from Scripps Research partnered with the New York Stem Cell Foundation to send tiny clusters of brain cells, known as “organoids,” to the International Space Station (ISS). These organoids were derived from stem cells and designed to mimic certain aspects of brain development.

Remarkably, the organoids returned from their month-long stay in orbit still healthy. However, they exhibited accelerated maturation compared to identical organoids grown on Earth. The space-exposed cells progressed closer to becoming fully developed neurons and showed early signs of specialization. These findings, recently published in Stem Cells Translational Medicine, offer new insights into how space travel might influence neurological development and brain function.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, PhD, professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”

/* */