Toggle light / dark theme

Is it Possible to Defeat Death? SENS Research Over 9000!

Dr. Aubrey de Grey on the case again in this amusing video.


Dr. Aubrey de Grey in a new video where people ask questions via Twitter. It is a bit tongue in cheek and sorry about the title but hopefully you will enjoy it,

If you liked this video and agree that eliminating age-related diseases is a good idea please consider visiting our website and making a donation for science on the link below:

Donate

Cellular reprogramming reverses signs of aging

An interesting but predictably hyped research study currently doing the rounds. Epigentic changes are one of the Hallmarks of Aging and this study reinforces their importance despite the usual media hype.


Graying hair, crow’s feet, an injury that’s taking longer to heal than when we were 20—faced with the unmistakable signs of aging, most of us have had a least one fantasy of turning back time. Now, scientists at the Salk Institute have found that intermittent expression of genes normally associated with an embryonic state can reverse the hallmarks of old age.

This approach, which not only prompted in a dish to look and behave young again, also resulted in the rejuvenation of with a , countering signs of aging and increasing the animals’ lifespan by 30 percent. The early-stage work provides insight both into the cellular drivers of aging and possible therapeutic approaches for improving human health and longevity.

“Our study shows that aging may not have to proceed in one single direction,” says Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and senior author of the paper appearing in the December 15, 2016 issue of Cell. “It has plasticity and, with careful modulation, aging might be reversed.”

Cellular Reprogramming Has Been Used to Reverse Ageing in Living Animals for the First Time

For the first time, scientists have used cellular reprogramming to reverse the ageing process in living animals, enabling mice with a form of premature ageing to live 30 percent longer than control animals.

The technique involves the use of induced pluripotent stem cells (iPSCs), which lets scientists reprogram skin cells to a base, embryonic-like state. From there, iPSCs can develop into other types of cells in the body – and now researchers have shown that reprogramming cells can also rejuvenate living creatures, in addition to winding back cells.

“In other studies scientists have completely reprogrammed cells all the way back to a stem-cell-like state,” says researcher Pradeep Reddy from the Salk Institute for Biological Studies.

Aging May Be Reversible: Researchers Rejuvenate Older Mice

Getting old may not be inevitable — scientists have found a way to turn back the clock on human and animal cells, making them look and behave like younger versions of themselves.

The researchers also used the method to treat mice with a rare disease that causes them to age prematurely and die early, and found that the method increased the animals’ lifespan by 30 percent. And, when normal mice received the treatment, they appeared to be rejuvenated, with some of their cells healing faster than normal in response to injury.

The researchers said that their findings may help scientists better understand the process of aging. One day, it may be possible to use a similar approach to ward off age-related diseases in humans, and thus improve people’s health and increase their lifespan, they said.

Rejuvenating the Mitochondria

Dr. Matthew O’Connor from the SENS Research Foundation gives a fascinating talk about this years successful results of the mitochondrial repair project (MitoSENS) and the potential for repairing age-related damage to the mitochondria that SENS proposes. 2017 could be an even better year for progress, please consider donating to the SRF Winter Fundraiser and help them make age-related disease a thing of the past.


Please take a few minutes to watch SENS Research Foundation’s Matthew O’Connor give a Google TechTalk during Google’s Giving Week campaign. The topic is his recently published article on our MitoSENS Research. If you enjoy this presentation and support our work please go to our website and donate today. Your support is critical to our success. You can donate at www.sens.org/donate

Donate

Ageing process may be reversible, scientists claim

The team showed that a new form of gene therapy produced a remarkable rejuvenating effect in mice. After six weeks of treatment, the animals looked younger, had straighter spines and better cardiovascular health, healed quicker when injured, and lived 30% longer.

Juan Carlos Izpisua Belmonte, who led the work at the Salk Institute in La Jolla, California, said: “Our study shows that ageing may not have to proceed in one single direction. With careful modulation, ageing might be reversed.”

The genetic techniques used do not lend themselves to immediate use in humans, and the team predict that clinical applications are a decade away. However, the discovery raises the prospect of a new approach to healthcare in which ageing itself is treated, rather than the various diseases associated with it.

Can naked mole rats teach us the secrets to living far longer? Google thinks so

It is looking increasingly likely the mysterious Google Calico have very modest ambitions regarding increased lifespans for humans given the comments made by Dr. Aubrey de Grey and others and the direction they are taking with their research. Modest increases of lifespan over the kind of robust therapies of SENS seems pretty dissapointing.


More about Google Calico and their aim to modestly increase lifespan. People like Dr. Aubrey de Grey and Nathaniel David from rising biotech star Unity.

“To some, Calico’s heavy bet on basic biology is a wrong turn. The company is “my biggest disappointment right now,” says Aubrey de Grey, an influential proponent of attempts to intervene in the aging process and chief science officer of the SENS Research Foundation, a charity an hour’s drive from Calico that promotes rejuvenation technology. It is being driven, he complains, “by the assumption that we still do not understand aging well enough to have a chance to develop therapies.” Indeed, some competitors are far more aggressive in pursuing interventions than Calico is.

They are very committed to these fundamental mechanisms, and bless them for doing that. But we are committed to putting drugs into the clinic and we might do it first,” says Nathaniel David, president and cofounder of Unity Biotechnology. This year, investors put $127 million behind Unity, a startup in San Francisco that’s developing drugs to zap older, “senescent” cells that have stopped dividing. These cells are suspected of releasing cocktails of unhelpful old-age signals, and by killing them, Unity’s drugs could act to rejuvenate tissues. The company plans to start with a modestly ambitious test in arthritic knees. De Grey’s SENS Foundation, for its part, has funded Oisin Biotechnologies, a startup aiming to rid bodies of senescent cells using gene therapy.”

Can Cellular Senescence be Reversed in the Near Future, and is Reversal Desirable?

Senescent cell removal holds great potential but are all research approaches equal?


Some scientific commentary on senescent cell clearing (Senolytics) and the different approaches the research community is engaged in.

“Researchers are taking two broad approaches to cellular senescence at the present time. The first is to build therapies that can selectively destroy senescent cells, following the SENS rejuvenation model of periodic removal of damage. If the number of senescent cells is managed so as to keep that count low, then they will not cause further harm. This has the advantage of being straightforward and requiring little further research to put into practice. A range of demonstrated treatments and potential treatments already exist — gene therapies, immunotherapies, senolytic drugs, and so forth — and companies such as Oisin Biotechnologies and UNITY Biotechnology are bringing some of these technologies to the clinic.”

CellAge: Senescent Cell Targeting Technology Video

Synthetic biology meets senolytics at Lifespan.io

We are developing tools to help researchers accurately target and remove dysfunctional cells in the body that have entered a state called “senescence”, and thereby assist in restoring it to youthful functionality. Please subscribe, share, and fund our campaign today! ►Campaign Link: https://www.lifespan.io/campaigns/cellage-targeting-senescen…c-biology/ ►Subscribe: https://www.youtube.com/user/LifespanIO?sub_confirmation=1


Our society has never aged more rapidly – one of the most visible symptoms of the changing demographics is the exponential increase in the incidence of age-related diseases, including cancer, cardiovascular diseases and osteoarthritis. Not only does aging have a negative effect on the quality of life among the elderly but it also causes a significant financial strain on both private and public sectors. As the proportion of older people is increasing so is health care spending. According to a WHO analysis, the annual number of new cancer cases is projected to rise to 17 million by 2020, and reach 27 million by 2030. Similar trends are clearly visible in other age-related diseases such as cardiovascular disease. Few effective treatments addressing these challenges are currently available and most of them focus on a single disease rather than adopting a more holistic approach to aging.

Recently a new approach which has the potential of significantly alleviating these problems has been validated by a number of in vivo and in vitro studies. It has been demonstrated that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to many age-related diseases. Furthermore, removing senescent cells from mice has been recently shown to drastically increase mouse healthspan (a period of life free of serious diseases).

Here at CellAge we are working hard to help translate these findings into humans!

CellAge: Dr. Aubrey de Grey Endorsement Video

Dr. Aubrey de Grey from the SENS Research Foundation was kind enough to talk in support of CellAge and their campaign on Lifespan.io

We are developing tools to help researchers accurately target and remove dysfunctional cells in the body that have entered a state called “senescence”, and thereby assist in restoring it to youthful functionality. Please subscribe, share, and fund our campaign today! ►Campaign Link: https://www.lifespan.io/campaigns/cellage-targeting-senescen…c-biology/ ►Subscribe: https://www.youtube.com/user/LifespanIO?sub_confirmation=1


Our society has never aged more rapidly – one of the most visible symptoms of the changing demographics is the exponential increase in the incidence of age-related diseases, including cancer, cardiovascular diseases and osteoarthritis. Not only does aging have a negative effect on the quality of life among the elderly but it also causes a significant financial strain on both private and public sectors. As the proportion of older people is increasing so is health care spending. According to a WHO analysis, the annual number of new cancer cases is projected to rise to 17 million by 2020, and reach 27 million by 2030. Similar trends are clearly visible in other age-related diseases such as cardiovascular disease. Few effective treatments addressing these challenges are currently available and most of them focus on a single disease rather than adopting a more holistic approach to aging.

Recently a new approach which has the potential of significantly alleviating these problems has been validated by a number of in vivo and in vitro studies. It has been demonstrated that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to many age-related diseases. Furthermore, removing senescent cells from mice has been recently shown to drastically increase mouse healthspan (a period of life free of serious diseases).

Here at CellAge we are working hard to help translate these findings into humans!

/* */