Toggle light / dark theme

Why is Alcor in Arizona? The main reason is that the risk of earthquakes and other natural disasters is fairly low. People opting for cryonics expect that their bodies might be in stasis for timescales measured in centuries.

As far as financial matters go, many of Alcor’s clients use life insurance policies to cover the cost of preservation and maintenance ($200,000 for a whole body or $80,000 for just the head). People use trust funds if they have net worth they want to recover when revived in the future.

The rationale presented to those considering cryonics is that there’s no guarantee they will ever be revived, but that it is reasonable that they might be. Along with chemicals called cryoprotectants, bodies getting preserved receive a host of medications. The list of the agents used is constantly evolving and continuing research is likely to reveal alternative methods that preserve organ function and cell integrity better. This means that cryopreservation is likely to work better years and decades into the future than it works now, even before getting to the milestone of having somebody revived.

UC San Francisco researchers have discovered how a mutation in a gene regulator called the TERT promoter—the third most common mutation among all human cancers and the most common mutation in the deadly brain cancer glioblastoma—confers “immortality” on tumor cells, enabling the unchecked cell division that powers their aggressive growth.

The research, published September 10, 2018 in Cancer Cell, found that patient-derived glioblastoma cells with TERT promoter mutations depend on a particular form of a protein called GABP for their survival. GABP is critical to the workings of most cells, but the researchers discovered that the specific component of this protein that activates mutated TERT promoters, a subunit called GABP-ß1L, appears to be dispensable in : Eliminating this subunit using CRISPR-based gene editing dramatically slowed the growth of the human in lab dishes and when they were transplanted into mice, but removing GABP-ß1L from healthy cells had no discernable effect.

“These findings suggest that the ß1L subunit is a promising new drug target for aggressive glioblastoma and potentially the many other cancers with TERT promoter mutations,” said study senior author Joseph Costello, Ph.D., a leading UCSF neuro-oncology researcher.

A new study reviews the state of the art of aging biomarkers and explores the future development of even better ways of measuring biological age.

The need for better aging biomarkers

Human life expectancy has been increasing throughout the 20th and 21st centuries due to improvements such as better access to healthcare and sanitation, lower child mortality, reduction of poverty, and better education access.

NOTE FROM TED: Please do not look to this talk for medical advice. This talk only represents the speaker’s personal views and understanding of aging which remains an emerging field of study. We’ve flagged this talk because it falls outside the content guidelines TED gives TEDx organizers. TEDx events are independently organized by volunteers. The guidelines we give TEDx organizers are described in more detail here: http://storage.ted.com/tedx/manuals/tedx_content_guidelines.pdf

Could we reverse epigenetic aging by re-growing the thymus? In the future, will it be possible to extend our lives or increase our longevity? Dr. Greg Fahy is a low-temperature biologist and investigator of aging intervention in humans. His first clinical trial, intended to reverse immune system aging, provided evidence that aging could be reversed in humans. Dr. Greg Fahy is a low-temperature biologist and investigator of aging intervention in humans. His first clinical trial, intended to reverse immune system aging, provided the first evidence that global aging can be reversed in humans. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

CHECK OUT SEASON 1 PLAYLIST: https://www.youtube.com/watch?v=ic9AV4mMbOQ&list=PL_GIV9cvJ8…itbMC34bPF

KEEP THE SHOW ON-AIR! : WWW.PATREON.COM/DEBTNATION

• PLEASE CHECK OUR SPONSOR: WWW.IAMTRANSHUMAN.ORG/

• LINK TO BOOK: https://www.amazon.com/Transhumanism-Handbook-Newton-Lee/dp/…atfound-20
IN THIS EPISODE:

This episode of Debt Nation is sponsored by Thrivous, the human enhancement company (https://thrivous.com). Thrivous develops and distributes advanced nootropic and geroprotector dietary supplements, to enhance cognition and promote healthy aging. Each nutrient and each dose is based on multiple human studies. And all quality control is completely open source.

A nightly jaunt on the exercise wheel enhances muscle-repair capabilities in old mice, according to a new study by researchers at Stanford School of Medicine.

Only older saw this benefit, which the researchers found is due to the rejuvenation of the .

“The effect in old animals is very significant,” said Thomas Rando, MD, Ph.D., professor of neurology and neurological sciences and director of Stanford’s Glenn Center for the Biology of Aging. “We found that restores youthfulness to tissue repair. Their muscle stem start to look and behave like those of much younger animals.”

“We were very pleased to find out that even though life span is a very complicated trait caused by variation on a large number of loci, which is true for most complex traits, the number of loci that are in common is a totally finite number. So, we can imagine going on to the next stage and investigating one gene at a time and in combination,” Mackay said.


Scientists believe about 25 percent of the differences in human life span is determined by genetics—with the rest determined by environmental and lifestyle factors. But they don’t yet know all the genes that contribute to a long life.

A study published March 5, 2020, in PLOS Biology quantified variation in life span in the fruit fly genome, providing valuable insights for preserving health in elderly humans—an ever-increasing segment of the population. The paper titled “Context-dependent genetic architecture of Drosophila life span” is the culmination of a decade of research by Clemson University geneticists Trudy Mackay and Robert Anholt.

It remains difficult to address the for life span in humans, so researchers conduct their experiments with model systems. Mackay, the Self Family Endowed Chair of Human Genetics, is one of the world’s leading experts on the Drosophila melanogaster model (aka the common fruit fly), which is an excellent model for comparative analysis of human disease and aging. About 70 percent of the fruit fly genome has a human counterpart.