Toggle light / dark theme

A team headed by Prof. Massimiliano Mazzone (VIB-KU Leuven Center for Cancer Biology), in collaboration with Dr. Emanuele Berardi and Dr. Min Shang, revealed a new metabolic dialogue between inflammatory cells and muscle stem cells. The researchers show that strengthening this metabolic crosstalk with an inhibitor of the enzyme GLUD1 fosters the release of glutamine, and improves muscle regeneration and physical performance in experimental models of muscle degeneration such as trauma, ischemia, and aging. Besides its translational potential, this work also provides key advances in several fields of research including muscle biology, immunometabolism, and stem cell biology.

The role of glutamine

Skeletal muscle is instrumental to move our body, but it is also a large reservoir of amino acids stored as proteins and it influences energy and protein metabolism throughout the human body. The role of the amino acid glutamine has been considered central for muscle metabolism because of its abundance. However, its precise role after trauma or during chronic muscle degenerative conditions were largely neglected.

Human body bio-factories of tommorow for organ and tissue replacement.


Ira Pastor, ideaXme life sciences ambassador interviews Dr Alexander Titus Chief Strategy Officer (CSO) at the Advanced Regenerative Manufacturing Institute (ARMI).

Ira Pastor comments:

KENNEDY SPACE CENTER (FL), October 19, 2020 – The Center for the Advancement of Science in Space (CASIS) and the National Science Foundation (NSF) announced three flight projects that were selected as part of a joint solicitation focused on leveraging the International Space Station (ISS) U.S. National Laboratory to further knowledge in the fields of tissue engineering and mechanobiology. Through this collaboration, CASIS, manager of the ISS National Lab, will facilitate hardware implementation, in-orbit access, and astronaut crew time on the orbiting laboratory. NSF invested $1.2 million in the selected projects, which are seeking to advance fundamental science and engineering knowledge for the benefit of life on Earth.

This is the third collaborative research opportunity between CASIS and NSF focused on tissue engineering. Fundamental science is a major line of business for the ISS National Lab, and by conducting research in the persistent microgravity environment offered by the orbiting laboratory, NSF and the ISS National Lab will drive new advances that will bring value to our nation and spur future inquiries in low Earth orbit.

Microgravity affects organisms—from viruses and bacteria to humans, inducing changes such as altered gene expression and DNA regulation, changes in cellular function and physiology, and 3D aggregation of cells. Spaceflight is advancing research in the fields of pharmaceutical research, disease modeling, regenerative medicine, and many other areas within the life sciences. The selected projects will utilize the ISS National Lab and its unique environment to advance fundamental and transformative research that integrates engineering and life sciences.

Can sub-zero stasis help humans escape death? In episode five of Hacking the Apocalypse, Claire Reilly goes inside a cryonics facility to investigate the experimental search for a second life.

CNET playlists: https://www.youtube.com/user/CNETTV/playlists
Download the new CNET app: https://cnet.app.link/GWuXq8ExzG
Like us on Facebook: https://www.facebook.com/cnet
Follow us on Twitter: https://www.twitter.com/cnet
Follow us on Instagram: http://bit.ly/2icCYYm

CJD happens when proteins called prions, which form incorrectly, find their way into the brain. Prions have the unfortunate, destructive ability to deform the proteins around them as well. As the prions gradually eat away at neurons, they create sponge-like holes in the brain. This leads to dementia, loss of bodily function, and eventually coma and death.

A new study — published last month in the journal Scientific Reports — looked at national data on people 50 years and older from Japan between the years 2005 and 2014 and found a gradual rise in the country’s CJD cases and deaths. The increase in both was most prominent among those older 70, but the Okayama University scientists behind the research saw a rise of CJD even after the data had been corrected for age.

“Given this trend in aging of population, the disease burden of CJD will continue to increase in severity,” the scientists wrote in their paper. “Our findings thus recommend that policymakers be aware of the importance of CJD and focus on preparing to address the increasing prevalence of dementia.”

A gene therapy that could restore the fading sight of the elderly is being tested on humans for the first time after positive results in blind mice.

It could be used to treat age-related macular degeneration, a common condition that usually first affects people in their 50s and 60s, scientists said.

It involves a one-time injection of a modified virus into the eye. This viral vector is altered to contain a synthetic gene that produces a protein that plays a critical role in the perception of light.

Though its a bit old, and sometimes innacurate or snarky in narration, it’s still the most detailed depiction of the cryonics process — the procedure itself on a real person, the person preserved before dying and her family as they decide to do this, deal with her death, and reflect on it after she’s preserved. It’s quite emotional and sometimes graphic, but well worth watching. Will it work? Maybe. But if you are NOT preserved there is NO chance at all. From your perspective it’d be like waking up right after dying in some distant future without feeling like any time passed at all.

That sounds a hell of a lot more appealing and likely than a bearded man on a fluffy cloud winking at me after I die.


Anita Riskin is one of hundreds of people who believe in cryonics — the process where doctors freeze human bodies. Preserve them, so that some time in the future they can be resuscitated — brought back to life. Now, as Anita Riskin sets out on her amazing journey, for the first time, you’ll see how it’s actually done — at times, quite graphically.