Toggle light / dark theme

Still, the timing of this film is remarkable, not only because the pandemic slowed us all down, but because we do live in an aging society. We also live in a time of accelerating technological transformation and precision medicine. It is no secret that transhumanist thinking is proliferating, and not just each time a billionaire flies into space. No less than The World Economic Forum has implicitly endorsed aspects of transhumanism’s agenda under the banner of “human enhancement” and more recently via “The Great Reset.”


The new film opened last Friday.

A couple people from TRIM are in TRIM-X to see how it works a second time.


In this video Dr. Fahy discusses what we can do to make the most of our thymus without the growth hormone treatment, what the timing makes sense for rejuvenation of the thymus and whether the thymus is tied to the other hallmarks of aging.

Dr. Greg Fahy is a world renowned cryobiologist and is also the chief science officer, and co-founder, of Intervene Immune, a company which pioneers treatments for thymus regeneration and age-related immune system decline. Dr. Fahy Designed and led the pilot TRIIM trial which first time showing both thymus rejuvenation and reversal of human epigenetic age. He is now running the follow up phase II trial TRIIM-X with the aim of confirming and extending the results.

Driver Clocks And Longevity — Dissecting True Functional “Drivers” Of Aging Phenotypes — Dr. Daniel Ives Ph.D., Founder and CEO — Shift Bioscience Ltd.


Dr. Daniel Ives, Ph.D. is Founder and CEO of Shift Bioscience Ltd. (https://shiftbioscience.com), a biotech company making drugs for cellular rejuvenation in humans through the application of machine-learning ‘driver’ clocks to cellular reprogramming, and is the scientific founder who first discovered the gene shifting targets upon which the Shift drug discovery platform is based.

Dr. Ives graduated from Imperial College with a degree in biochemistry and gained his PhD in 2013 working at the MRC Mitochondrial Biology Unit in Cambridge. He carried out his post-doctoral studies under Ian Holt at the National Institute of Medical Research in Mill Hill, now part of the Crick Institute, pursuing damage-removal strategies for mitochondrial DNA mutations.

Although visible signs of aging are usually unmistakable, unraveling what triggers them has been quite a challenge. Researchers at Baylor College of Medicine and collaborating institutions have discovered that a cellular phenomenon called cryptic transcription, which had been previously described and linked to aging in yeasts and worms, is elevated in aging mammalian stem cells.

The team reports in the journal Nature Aging that cryptic transcription occurs because a that keeps it in check falls apart as cells get old. The findings suggest that strategies that control cryptic transcription could have pro-longevity effects.

“In previous work, we showed that cryptic transcription in yeasts and worms is not only a marker of aging but also a cause,” said corresponding author Dr. Weiwei Dang, assistant professor of molecular and and the Huffington Center on Aging at Baylor. “Reducing the amount of this aberrant transcription in these organisms prolonged their lifespan.”

I know some epidemiological studies have promoted moderate alcohol intake as better for longevity than not drinking at all, but I thought that sounded kinda suspicious, so I dug into all the research to see for myself.

Turns out, there’s actually some in vivo studies showing life extension effects of low amounts of alcohol on animals.


What’s the effect of moderate alcohol on life expectancy? The science is confusing so we did a deep dive to find if a little booze is healthy.

The news we like: “In five to 10 years time from now, we’ll have a new, special kind of drugs: longevity drugs. And unlike today’s medication, which always focused on one disease, this kind of drug will will give us an opportunity to influence aging as a whole and a very fatalistic way, working on healthspan, not only on lifespan… it’s very likely that this new drug will be developed with the help of artificial intelligence, which will compress drug development cycle by two or three times from what they are today.”


Ahead of the launch of his new book Growing Young, Sergey Young joins us for a video interview to discuss longevity horizons, personal health strategies and disruptive tech – and how we are moving towards radically extending our lifespan and healthspan.

Sergey Young, the longevity investor and founder of the Longevity Vision Fund is on a mission to extend healthy lifespans of at least one billion people. His new book, Growing Young, is released on 24th August and is already rising up the Amazon charts.

“It’s been amazing three years journey,” Young told Longevity. Technology. “I spent hours and days in different labs in the best clinics in the world and best academic institutions. I even talked to Peter Jackson! I’m very excited to share with everyone, so every reader can start their longevity journey today.”

“Balancing that, I clearly state that my goal is not longevity, not even modest longevity. It’s just reversal of diseases of aging, which really is classic medicine. Q: Which takes me to the next question: do we even know how to aim at life extension? I don’t think we do. I think if we get serious aging reversal, it’s something that we can continue to improve on, just like we improved on transportation from the first wheel to rocket ships,” I’ll be honest, I disagree as we have some improvement in humans indicated from TRIM and TAME and plasma filtering. Church’s work is very important though.


Professor of Genetics at Harvard Medical School and one of the most prominent geroscientists, George Church works on gene therapies that can potentially reverse age-related diseases. We had the opportunity to interview this prolific researcher and entrepreneur, who is involved in dozens of startups on topics ranging from the current state of gene therapy to his recent attempt to auction off his genome, one of the first sequenced human genomes in the world, as an NFT.

What have been the successes and the failures of gene therapy in recent years? What do you expect to happen in the next few years?

So, most of the big failures of gene therapy happened at the very beginning, around the year 2000, almost two decades ago, when a couple of people died from an LMO2 oncogene, and one person died from an immune reaction to an adenovirus vector. So, that was 20 years ago. Fast forward to now, and gene therapies are mostly succeeding, hundreds of them are in clinical trials, you have dozens that have been approved by the FDA.

“Our study raises the possibility of using therapeutic drugs, gene editing, or other strategies to make epigenetic modifications that tap into the latent regenerative capacity of inner ear cells as a way to restore hearing,” said Segil. “Similar epigenetic modifications may also prove useful in other non-regenerating tissues, such as the retina, kidney, lung, and heart.”


Scientists from the USC Stem Cell laboratory of Neil Segil have identified a natural barrier to the regeneration of the inner ear’s sensory cells, which are lost in hearing and balance disorders. Overcoming this barrier may be a first step in returning inner ear cells to a newborn-like state that’s primed for regeneration, as described in a new study published in Developmental Cell.

“Permanent hearing loss affects more than 60 percent of the population that reaches retirement age,” said Segil, who is a Professor in the Department of Stem Cell Biology and Regenerative Medicine, and the USC Tina and Rick Caruso Department of Otolaryngology – Head and Neck Surgery. “Our study suggests new gene engineering approaches that could be used to channel some of the same regenerative capability present in embryonic inner ear cells.”

In the inner ear, the hearing organ, which is the cochlea, contains two major types of sensory cells: “hair cells” that have hair-like cellular projections that receive sound vibrations; and so-called “supporting cells” that play important structural and functional roles.