Toggle light / dark theme

Cam & Dowel Jig is a collection of preset jigs and various tools that are designed to help guide users through designing and constructing their own bespoke furniture.

If you didn’t pick up woodworking as a hobby during the quarantine, chances are you at least tried. In a perfect world, we’d have the know-how to pick up some tools, some pieces of wood, and design our living rooms with our own collection of bespoke furniture. Alas, this is no perfect world so we’ll need some shortcuts. Luckily, David Needham of Kingfisher Design Studio has us covered with an intuitive tool kit designed to streamline bespoke, DIY furniture-building projects.

Dr. Marvin Minsky — A.I. Pioneer & Mind Theorist. Professor of Media Arts and Sciences, MIT, Media Lab http://GF2045.com/speakers.

As soon as we understand how the human brain works, we should be able to make functional copies of our minds out of other materials. Given that everything is made of atoms, if you make a machine, in some sense it is made of the same kinds of materials as brains are made but organized either in very different ways or fundamentally the same ways.

Interestingly, if you are going to copy the organization of a particular human mind maybe you should make a dozen of them. There is no particular limit on how many copies to make and how the future society will treat them.

When will all these great things happen of overcoming death and making people more intelligent and turning ourselves into machines with replaceable parts so that suffering will disappear? Many great science fiction writers have written well about the future of human minds and what will happen if we eliminate death and people can live forever and we keep growing and so forth.

A team of scientists at Tufts University and Harvard University “have brought us a step closer to the goal of regenerative medicine” by using a drug cocktail to regrow a frog’s amputated legs.

Peer-reviewed study: https://www.science.org/doi/10.1126/sciadv.abj2164


Scientists say they have been able to help frogs regrow their legs for the first time. The next step? Try the procedure on mammals.

He’s backing a new biotech company working on “cellular rejuvenation programming.”


It sure looks like Jeff Bezos has plans to cheat death.

The founder and former CEO of Amazon has reportedly made an investment in the freshly launched Altos Labs, a biotech startup focused on “cellular rejuvenation programming to restore cell health and resilience, with the goal of reversing disease to transform medicine,” according to a January 19 press release. With $3 billion in backing on day one, Altos Labs has hit the ground running with what may be the single largest funding round for a biotech company, according to the Financial Times of London.

Altos Labs has an impressive roster of executives that includes experts formerly of GlaxoSmithKline, a health care company in the United Kingdom that primarily develops pharmaceuticals and vaccines; Genentech, a San Francisco-based biotech firm that created the first targeted antibody for cancer; and the National Cancer Institute. The quest to cheat death is as old as life itself, but this is an especially pedigreed bunch to take on the challenge.

Blood plasma, cellular reprogramming, endogenous.


You may have heard a lot of talk recently about cellular reprogramming, rejuvenation or even “rejuvenation programming”, but what does that all mean and what are the 3 main strategies that several researchers and companies (maybe Altos Labs) will be further investigating?

Well i discuss in this video.

There is nothing inevitable about aging, or about its rate. Californian bristlecone pines are believed to live for 5,000 years, and there are long-lived mammalian creatures as well. Some marine creatures do not display any signs of aging at all, including hydra, jellyfish, planarian worms, and coral. Certain human cells have immortal characteristics too. When a woman gives birth, she produces a baby which is “new”. Her “germline” (reproduction-related) cells produce a child with no signs of age.

These and many other considerations combine with the unreasonable effectiveness of modern AI to lead some people to believe that significant advances in longevity are imminent. These advances probably cannot happen without the active participation of the wider pharmaceutical industry, and the acceptance by policy makers and regulators that aging is a disease, not just an unfortunate and inevitable component of the human condition. There is still considerable reluctance among major pharmaceutical companies to contemplate specific anti-aging therapeutic developments. But there are encouraging signs of this reluctance being challenged, especially at Novartis and AstraZeneca.

Beyond the pharma giants, Mellon reckons there are 255 companies which claim to be specifically targeting aging, of which 35 are listed on stock markets. But he thinks that only a minority of them are genuinely working to tackle aging, as opposed to one of the diseases it causes, like cancer, dementia, or heart disease. He likens the state of the longevity industry today to the internet industry of 20 years ago, when it was still in its dial-up phase, and downloading information (or, heaven forbid, images) was like sucking jelly through a straw. And although longevity will have such a massive impact on all of us that you might expect progress to be expedited, Mellon points out that the internet did not have to go through lengthy and expensive FDA trials at every step.

Autophagy is often likened to the trash management system of the cell. And just as municipal waste services involve collection, transportation and ultimately disposal, so too must the cell’s autophagy system follow a coordinated, multistep process. It first requires cellular refuse to be bagged up inside sack-like structures known as phagophores. These then mature into cargo containers called autophagosomes, which fuse with degradation hubs called lysosomes. Only then do waste products get broken down.

Any part of that cell-cleaning process could go wrong, and they often do as cells age. But if researchers do not fully understand what aspects of autophagy are defective in any particular disease, drugs that modulate the wrong parts of the pathway could do more harm than good. A therapy could, for instance, help the cell to package more trash. “But if your trash compactor isn’t working properly, you’re just going to end up with a room full of trash bags,” says Tim Sargeant, who studies autophagy at the South Australian Health and Medical Research Institute in Adelaide. “That’s one of the dangers here.”

As a result, although some anti-ageing researchers and companies have gone all-in on targeting autophagy, others are more circumspect — especially given the lack of solid evidence in people or even mouse models for many of the proposed interventions.

Frogs briefly treated with a five-drug cocktail administered by a wearable bioreactor on the stump were able to regrow a functional, nearly complete limb.

For millions of patients who have lost limbs for reasons ranging from diabetes to trauma, the possibility of regaining function through natural regeneration remains out of reach. Regrowth of legs and arms remains the province of salamanders and superheroes.

But in a study published in the journal Science Advances, scientists at Tufts University and Harvard University’s Wyss Institute have brought us a step closer to the goal of regenerative medicine.