Menu

Blog

Archive for the ‘life extension’ category: Page 182

Aug 22, 2022

Can We Adapt Old Power Plants to Run on Green Hydrogen?

Posted by in categories: business, food, life extension

Star Scientific invents a catalyst that in the presence of hydrogen and oxygen heats to 700 Celsius. That’s enough heat to drive a steam turbine for power generation.


Star Scientific is a 25-year-old research laboratory north of Sydney, Australia. The company is one of many trying to make existing power plants carbon-free. This includes old coal-fired thermal power stations which remain among the biggest contributors to greenhouse gas emissions on the planet. Star has invented a patented non-polluting catalyst which it calls HERO® which is an acronym for Hydrogen Energy Release Optimizer. It uses hydrogen without producing combustion.

Mars Food Australia, the subsidiary of the global food giant, is using HERO® to help decarbonize its processes. The 18-month pilot project is the first step in developing alternative heat sources for the food industry. Bill Heague who is General Manager of Mars in Australia states, “Thermal energy is crucial to the business of cooking food and this technology has the capability to create limitless heat without any combustion and zero emissions.”

Continue reading “Can We Adapt Old Power Plants to Run on Green Hydrogen?” »

Aug 22, 2022

Human Skin Cells Reprogrammed Into Aged Neurons To Study Neurodegenerative Disorders

Posted by in categories: biotech/medical, life extension, neuroscience

“We took skin biopsies from patients living with Huntington’s disease and reprogrammed the skin biopsies into neurons. We then compared these neurons with reprogrammed neurons from healthy people. The results are very interesting. We have found several defects that explain some of the disease mechanisms in neurons from patients with Huntington’s disease. Among other things, we observed that neurons from patients with Huntington’s disease show problems in breaking down and recycling a particular kind of protein – which can lead to a lack of energy in these cells”, says Johan Jakobsson, professor of neuroscience at Lund University.

The researchers have also measured the biological age of the cells and observed that the reprogrammed neurons retain their biological age, which is significant if they are to be used for research in the new model system.

Aug 21, 2022

Glycine + N-Acetyl Cysteine Supplementation Increases Lifespan

Posted by in categories: biotech/medical, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Continue reading “Glycine + N-Acetyl Cysteine Supplementation Increases Lifespan” »

Aug 21, 2022

How Studying Cellular Senescence Can Help Researchers Learn to Delay Aging

Posted by in categories: biotech/medical, life extension

Reaching the golden years doesn’t always feel so golden. Growing older introduces a range of health challenges, including being at increased risk for developing chronic diseases and having reduced immunity to infection. But while scientists have traditionally viewed the unpleasant aspects of aging as inevitable, new research could reveal how to substantially delay aging and improve the health of older individuals.

Chronic inflammation, one of the major hallmarks of aging, is thought to be partly caused by senescent cells that may accumulate in older individuals. Now, Yale researchers have received a grant [U54-AG079759] from the National Institutes of Health (NIH) Common Fund’s Cellular Senescence Network Program (SenNet) to study these specialized cells. The grant will further scientists’ knowledge of the mechanisms behind aging and potential therapies for dampening inflammation associated with old age. The SenNet is based on ‘Geroscience,’ an approach that intersects basic aging biology, chronic disease, and health to understand the cellular mechanisms that make aging a major risk factor for common chronic conditions of older people. Support by the NIH Common Fund shows the NIH’s commitment to Geroscience as a complex, high priority topic in biomedical research.

“A number of diseases that increase in older people may have a unifying underlying mechanism having to do with senescence,” says Ruth Montgomery, PhD, professor of medicine and of epidemiology (microbial diseases), and co-PI of the project. “If we are able to understand and address this, we may be able to reduce the incidence of a number of diseases, including cancers and heart diseases.”

Aug 20, 2022

Christian Angermayer on longevity and biotech investment

Posted by in categories: biotech/medical, life extension

Christian Angermayer, founder of talks longevity investment, optimism on SPAC deal and light at the end of the tunnel for the biotech market.
One of the speakers at October’s Rejuvenation Startup Summit in Berlin is the entrepreneur and investor, Christian Angermayer.

With more than $3 billion under management through his Apeiron Investment Group, Angermayer is a major figure in the longevity sector through his platform biotech companies Cambrian and Rejuveron – building on his belief that everyone wants to live healthier, happier and longer lives.

Continue reading “Christian Angermayer on longevity and biotech investment” »

Aug 19, 2022

Aubrey de Grey in conversation with Martin O’Dea of Longevity Summit Dublin

Posted by in category: life extension

Famed researcher Dr Aubrey de Grey speaks with Martin O’Dea, CEO of Longevity Events, ahead of the inaugural Longevity Summit at Dublin’s Mansion House next month. The Round Room on Dublin’s Dawson Street will host some of the world’s renowned longevity experts including Aubrey de Grey, Co-Founder of SENS Research Foundation.
de Grey is really looking forward to this 3-day event in September 2022 to network, educate, research, meet and nurture the global longevity relationships through meeting unique individuals, companies, foundations and investors from all corners of the globe.

https://longevitysummitdublin.com/

Aug 18, 2022

Probing the Secrets to Human Longevity with Methuselah Flies

Posted by in categories: biotech/medical, genetics, life extension, robotics/AI, singularity

In the 1980s, biologist Dr Michael Rose started to selectively breed Drosophila fruit flies for increased longevity. Today, the descendants of the original Methuselah flies are held by biotech firm Genescient Corporation and live 4.5 times longer than normal fruit flies.

The flies’ increased lifespan is explained by a significant number of systemic genetic changes — but how many of these variations represent lessons that can be used to design longevity therapies for humans? Dr. Ben Goertzel and his bio-AI colleagues at SingularityNET and Rejuve. AI are betting the answer is quite a few.

SingularityNET and Rejuve. AI have launched a partnership with Genescient to apply advanced machine learning and machine reasoning methods to transfer insights gained from the Methuselah fly genome to the human genome. The goal is to acquire new information regarding gene therapies, drugs or nutraceutical regimens for prolonging healthy human life.

Aug 18, 2022

‘Zombie Cells’ Are Still Alive but Can’t Function, and They Accumulate as We Age

Posted by in categories: biotech/medical, genetics, life extension

Damage to the ends of your chromosomes can create “zombie cells” that are still alive but can’t function, according to our recently published study in Nature Structural and Molecular Biology.

When cells prepare to divide, their DNA is tightly wound around proteins to form chromosomes that provide structure and support for genetic material. At the ends of these chromosomes are repetitive stretches of DNA called telomeres that form a protective cap to prevent damage to the genetic material.

However, telomeres shorten each time a cell divides. This means that as cells divide more and more as you age, your telomeres become increasingly shorter and more likely to lose their ability to protect your DNA.

Aug 17, 2022

Senolytics rejuvenate the regenerative capacity of the heart

Posted by in categories: biotech/medical, life extension

Speaking at the Longevity Leaders conference earlier this year, King’s College London Professor Georgina Ellison-Hughes shared a fascinating insight into her work to establish the adult heart as a self-renewing organ with regenerative capacity.

Longevity. Technology: The heart is generally considered a “post-mitotic” organ, or one without regenerative capacity. As we age and encounter chronic disease, senescent cells accumulate in the heart, just as they do in other tissues and organs. Ellison-Hughes’ work has shown that cellular senescence may impact the efficacy of regenerative therapies, and that senolytics have the potential to rejuvenate the heart’s capacity to regenerate. We caught up with the professor to learn more.

Cellular senescence is one of the nine hallmarks of aging. It occurs when our cells stop reproducing and enter a zombie state where they refuse to die – hanging around and causing problems throughout our bodies. Ellison-Hughes is professor of regenerative muscle physiology at King’s and in 2019 was co-author of a study in Aging Cell, which found that senescent cells impaired regeneration in the human heart.

Aug 16, 2022

Spider Silk Proteins Developed into Gel for Biomedical Applications

Posted by in categories: biotech/medical, chemistry, life extension

Down the line, the researchers hope to develop an injectable protein solution that forms a gel inside the body. The ability to design hydrogels with specific functions opens up for a range of possible applications. Such a gel could, for example, be used to achieve a controlled release of drugs into the body. In the chemical industry, it could be fused to enzymes, a form of proteins used to speed up various chemical processes.

“In the slightly longer term, I think injectable gels can become very useful in regenerative medicine,” says the study’s first author Tina Arndt, a PhD student in Anna Rising’s research group at Karolinska Institute. “We have a long way to go, but the fact that the protein solution quickly forms a gel at body temperature and that the spider silk has been shown to be well tolerated by the body is promising.”

The ability of spiders to spin incredibly strong fibers from a silk protein solution in fractions of a second has sparked an interest in the underlying molecular mechanisms. The researchers at KI and SLU have been particularly interested in the spiders’ ability to keep proteins soluble so that they do not clump together before the spinning of the spider silk. They have previously developed a method for the production of valuable proteins which mimics the process the spider uses to produce and store its silk proteins.