Toggle light / dark theme

Rutgers researchers found that increased brown fat improves longevity and exercise capacity in mice. They aim to develop a drug that replicates these benefits in humans.

Rutgers Health researchers have made discoveries about brown fat that could pave the way for helping people stay physically fit as they age.

A team from Rutgers New Jersey Medical School found that mice lacking a specific gene developed an unusually potent form of brown fat tissue, which extended lifespan and increased exercise capacity by approximately 30%. The team is now working on a drug that could replicate these effects in humans.

When light interacts with metallic nanostructures, it instantaneously generates plasmonic hot carriers, which serve as key intermediates for converting optical energy into high-value energy sources such as electricity and chemical energy. Among these, hot holes play a crucial role in enhancing photoelectrochemical reactions. However, they thermally dissipate within picoseconds (trillionths of a second), making practical applications challenging.

Now, a Korean research team has successfully developed a method for sustaining hot holes longer and amplifying their flow, accelerating the commercialization of next-generation, high-efficiency, light-to-energy conversion technologies.

The research team, led by Distinguished Professor Jeong Young Park from the Department of Chemistry at KAIST, in collaboration with Professor Moonsang Lee from the Department of Materials Science and Engineering at Inha University, has successfully amplified the flow of hot holes and mapped local current distribution in real time, thereby elucidating the mechanism of photocurrent enhancement. The work is published in Science Advances.

From a very young age, we’re socialized to view the world as being made up of “goodies” and “baddies.” When you’re a child fooling around with your friends in the playground, nobody ever wants to be the baddy. And when it comes to dressing up, everybody wants to be Luke Skywalker—not Darth Vader.

This oversimplified way of viewing the world as being made up of right and wrong or good people and bad people doesn’t dissipate as we grow older. If anything, it tends to solidify as we form the that define who we are in adult life.

This is particularly the case when it comes to our political identities and, specifically, the partisan identities and loyalties that individuals attach themselves to.

The study, “Endothelial TDP-43 Depletion Disrupts Core Blood-Brain Barrier Pathways in Neurodegeneration,” was published on March 14, 2025. The lead author, Omar Moustafa Fathy, an MD/Ph. D. candidate at the Center for Vascular Biology at UConn School of Medicine, conducted the research in the laboratory of senior author Dr. Patrick A. Murphy, associate professor and newly appointed interim director of the Center for Vascular Biology. The study was carried out in collaboration with Dr. Riqiang Yan, a leading expert in Alzheimer’s disease and neurodegeneration research.

This work provides a novel and significant exploration of how vascular dysfunction contributes to neurodegenerative diseases, exemplifying the powerful collaboration between the Center for Vascular Biology and the Department of Neuroscience. While clinical evidence has long suggested that blood-brain barrier (BBB) dysfunction plays a role in neurodegeneration, the specific contribution of endothelial cells remained unclear. The BBB serves as a critical protective barrier, shielding the brain from circulating factors that could cause inflammation and dysfunction. Though multiple cell types contribute to its function, endothelial cells—the inner lining of blood vessels—are its principal component.

“It is often said in the field that ‘we are only as old as our arteries’. Across diseases we are learning the importance of the endothelium. I had no doubt the same would be true in neurodegeneration, but seeing what these cells were doing was a critical first step,” says Murphy.

Omar, Murphy, and their team tackled a key challenge: endothelial cells are rare and difficult to isolate from tissues, making it even harder to analyze the molecular pathways involved in neurodegeneration.

To overcome this, they developed an innovative approach to enrich these cells from frozen tissues stored in a large NIH-sponsored biobank. They then applied inCITE-seq, a cutting-edge method that enables direct measurement of protein-level signaling responses in single cells—marking its first-ever use in human tissues.

This breakthrough led to a striking discovery: endothelial cells from three different neurodegenerative diseases—Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD)—shared fundamental similarities that set them apart from the endothelium in healthy aging. A key finding was the depletion of TDP-43, an RNA-binding protein genetically linked to ALS-FTD and commonly disrupted in AD. Until now, research has focused primarily on neurons, but this study highlights a previously unrecognized dysfunction in endothelial cells.

“It’s easy to think of blood vessels as passive pipelines, but our findings challenge that view,” says Omar. “Across multiple neurodegenerative diseases, we see strikingly similar vascular changes, suggesting that the vasculature isn’t just collateral damage—it’s actively shaping disease progression. Recognizing these commonalities opens the door to new therapeutic possibilities that target the vasculature itself.”

One of the most enduring questions humans have is how long we’re going to live. With this comes the question of how much of our lifespan is shaped by our environment and choices, and how much is predetermined by our genes.

A study recently published in the prestigious journal Nature Medicine has attempted for the first time to quantify the relative contributions of our environment and lifestyle versus our genetics in how we age and how long we live.

The findings were striking, suggesting our environment and lifestyle play a much greater role than our genes in determining our longevity.

Key Takeaways A study found that some organs age faster than a person’s actual ageFaster organ aging is linked to diseases like cancer, dementia and heart diseaseA blood test could help detect early signs of organ aging.

MONDAY, March 17, 2025 (HealthDay News) — Your organs might be aging faster than you are — and that could increase your risk for serious diseases, including cancer, heart disease and dementia.

Japan is home to a wide variety of train stations, from tiny countryside sheds to sprawling urban complexes, stations with their own wineries and ones with giant ancient relics whose eyes glow. It’s gotten to the point where it’s really hard to be “the first” anything when it comes to train stations, but JR West has managed it with the first-ever 3D-printed station building.

This new structure is scheduled to replace the current one at Hatsushima Station on the JR Kisei Main Line in Arida City, Wakayama Prefecture. Like many relatively rural stations in Japan, the wooden structures are aging and in need of replacements.

The new building will be roughly the same size, covering 10 square meters (108 square feet) and made from a more durable reinforced concrete. The foundation and exterior of the building will be printed off-site by Osaka-based 3D-printer housing company Serendix.

43:10 Aubrey talks about costs.


In this episode of Becoming Young, Josh and Janae sit down with legendary longevity researcher Aubrey de Grey to explore the future of aging science and what it means for human lifespan. They dive deep into the latest breakthroughs in mTOR, rapamycin, senescence, and cellular rejuvenation, uncovering how cutting-edge research is redefining what’s possible for human healthspan.

Things we discussed…

The history of aging research and why scientists once believed aging was inevitable.
Aubrey de Grey’s new mouse studies and what they reveal about reversing aging.
Rapamycin, mTOR, and autophagy—how this pathway influences longevity.
The role of senolytics and clearing aging cells to extend healthspan.
What the future holds: Are we on the verge of radically extending human lifespan?
This is a must-watch for anyone interested in biohacking, anti-aging science, and longevity breakthroughs.

Subscribe for more expert interviews on longevity, biohacking, and peak performance!