Archive for the ‘life extension’ category: Page 12

Nov 6, 2023

New treatment reverses epigenetic age of rats by 67.4%

Posted by in categories: biotech/medical, genetics, life extension

Equivalent to an 80-year-old human reverting to the age of 26.

A groundbreaking study into anti-aging has reported significant rejuvenation effects using exosomes, tiny particles which can be extracted from biological fluids such as blood plasma.

Old and young rat. Image generated by DALL·E 3

Continue reading “New treatment reverses epigenetic age of rats by 67.4%” »

Nov 5, 2023

NASA open to keeping ISS beyond 2030 if no viable replacements

Posted by in categories: futurism, life extension

NASA official says the ISS may not be retired in 2030 if commercial space stations are not ready.

NASA has hinted that it may extend the life of the International Space Station (ISS) beyond 2030 if there are no viable alternatives in the form of commercial space stations.

As per SpaceNews, Ken Bowersox, NASA associate administrator for space operations, said at the Beyond Earth Symposium on November 2 that the agency was flexible about the future of the ISS and would only retire it once there were new platforms to replace it.

Nov 5, 2023

NMN Ban? No Problem, Low Dose Niacin (60 mg/d) Increases NAD

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!

Discount Links:
NAD+ Quantification:
Use Code: ConquerAging At Checkout.

Continue reading “NMN Ban? No Problem, Low Dose Niacin (60 mg/d) Increases NAD” »

Nov 3, 2023

Running Large-Scale CRISPR Screens in Human Neurons

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Identifying therapeutic targets for neurodegenerative conditions is often challenging due to the limited accessibility of reproducible, scalable in vitro cell models. Genome-level CRISPR screens are useful for these studies but performing screens that include the necessary replicates requires billions of cells. Human iPSC-derived cells can provide the needed scale, however, the complex process of directed differentiation is time-consuming, resource-intensive, and rarely feasible. Furthermore, delivering ribonucleases by transfection or transduction is inefficient in human iPSC-derived cells, especially delicate cell types like neurons. As a result, scientists often rely on immortalized cell lines, which do not accurately represent human biology or disease states, to run large-scale CRISPR screens.

In this GEN webinar, two experts will discuss solutions for running large-scale CRISPR screens to identify therapeutic targets for neurodegenerative diseases. They will present ioCRISPR-Ready Cells™: human iPSC-derived cells precision reprogrammed with opti-ox™, that constitutively express Cas9 nuclease, which are built for rapidly generating gene knockouts and CRISPR screens. During the webinar, you’ll learn about two peer-reviewed studies that performed large scale CRISPR knockout screens using opti-ox powered glutamatergic neurons with stable Cas9 expression. The first study demonstrates a loss-of-function genetic screen using a human druggable genome library. The second study investigated possible regulators of the RNA binding motif 3 protein, whose enhanced expression is highly neuroprotective both in vitro and in vivo.

Nov 3, 2023

When will we upload our consciousness to the cloud?

Posted by in categories: biotech/medical, computing, life extension, neuroscience

As long as people have been alive, they’ve wanted to stay alive. For centuries, explorers have searched for the fountain of youth. And today, scientists are hard at work researching technology that can extend the human lifespan, stop or reverse aging; and even preserve a terminally ill person indefinitely, until a cure for their disease is discovered. But what if — instead of preserving our *bodies* — we could preserve our *consciousness*; by uploading it to a powerful computer. This is called *mind uploading*. And one startup has developed a procedure to do exactly this. It’s scientifically sound, there’s a waiting list to participate, and the procedure — is one hundred percent fatal. Let’s find out why.〰
🙏 (Fun, Free Perks!)👽 BUY WHY FILES MERCH
👽 (Code: LIZZIDPEEPLE for 10% off first order)💬 CHAT WITH US ON DISCORD
🌐 OFFICIAL WEB SITE:🕵️ Submit a topic, suggestion or just say hi:
🕵️🎨 Have a product suggestion or want to design artwork for TWF?
🎨📸 BE A WHY FILES MODEL (and get free stuff!)
📸 Send a photo of you/family/friends watching TWF.
📸 wearing TWF gear, using TWF merchandise:
⁍ TWF on SOCIAL (in order of importance)〰
#science #future #technology

Nov 2, 2023

Mechanism That Forms Connections in the Brain Identified

Posted by in categories: chemistry, life extension, neuroscience

How are synapses formed, those points of contact that allow the transmission of information from one neuron to the other? Working with an international team, researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) have now uncovered a crucial mechanism and elucidated the identity of the axonal transport vesicles that generates synapses. The findings provide an important basis for promoting the regeneration of nerve cells and counteracting the aging process in the future. The results have just been published in the journal Science.

Whether in the brain or in the muscles, wherever there are nerve cells, there are synapses. These contact points between neurons form the basis for the transmission of excitation, i.e. communication between neurons. As in any communication process, there is a sender and a receiver: Nerve cell processes called axons generate and transmit electrical signals thereby acting as signal senders. Synapses are points of contact between axonal nerve terminals (the pre-synapse) and post-synaptic neurons. At these synapses, the electrical impulse is converted into chemical messengers that are received and sensed by the post-synapses of the neighboring neuron. The messengers are released from special membrane sacs called synaptic vesicles.

Nov 2, 2023

‘Plug and play’ nanoparticles could make it easier to tackle various biological targets

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology

Engineers at the University of California San Diego have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.

The beauty of this technology lies in its simplicity and efficiency. Instead of crafting entirely new for each specific application, researchers can now employ a modular nanoparticle base and conveniently attach proteins targeting a desired biological entity.

In the past, creating distinct nanoparticles for different biological targets required going through a different synthetic process from start to finish each time. But with this new technique, the same modular nanoparticle base can be easily modified to create a whole set of specialized nanoparticles.

Nov 1, 2023

At Abundance 360, David Sinclair made quite a number of encouraging comments about the future of aging research, including methods of resetting epigenetics to a youthful state

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, life extension, Peter Diamandis, robotics/AI

Emmett Short discusses these comments on this episode of Lifespan News.

But first, the mad scientist David Sinclair, this time with Peter Diamandis at Abundance 360, giving more details into human trials for the genetic engineering side of the technology versus the chemical and pill side of the technology. Which would you want more? We’ll also hear David’s thoughts on how AI will affect the advancement of this tech. Spoiler: A lot. I’m going to play the best parts and add my commentary along the way.

Nov 1, 2023

HbA1c: What’s Optimal, What’s My Data?

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!

Discount Links:
Telomere and Epigenetic Testing:…M0&irgwc=1

Continue reading “HbA1c: What’s Optimal, What’s My Data?” »

Nov 1, 2023

Immune system aging can be revealed by CT scan of thymus, research suggests

Posted by in categories: biotech/medical, life extension, sex

The thymus, a small and relatively unknown organ, may play a bigger role in the immune system of adults than was previously believed. With age, the glandular tissue in the thymus is replaced by fat, but, according to a new study from Linköping University, the rate at which this happens is linked to sex, age and lifestyle factors. These findings also indicate that the appearance of the thymus reflects the aging of the immune system.

“We doctors can assess the appearance of the thymus from largely all chest CT scans, but we tend to not see this as very important. But now it turns out that the appearance of the thymus can actually provide a lot of valuable information that we could benefit from and learn more about,” says Mårten Sandstedt, MD, Ph.D., at the Department of Radiology in Linköping and Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University.

The thymus is a gland located in the upper part of the chest. It has been long known that this small organ is important for immune defense development in children. After puberty, the thymus decreases in size and is eventually replaced by fat, in a process known as fatty degeneration. This has been taken to mean that it loses its function, which is why the thymus has for a long time been considered as being not important in adult life.

Page 12 of 580First910111213141516Last