Toggle light / dark theme

Wonder how Tim Cook, Satya & Bill, and Eric and Sergey will respond.


Overseas critics of the law argue it threatens to shut foreign technology companies out of various sectors. PHOTO: REUTERS

BEIJING: China adopted a controversial cybersecurity law on Monday to counter what Beijing says are growing threats such as hacking and terrorism, although the law has triggered concern from foreign business and rights groups.

The legislation, passed by China’s largely rubber-stamp parliament and set to come into effect in June 2017, is an “objective need” of China as a major internet power, a parliament official said.

Read more

Tune in tomorrow (Thursday, Nov 10, 2016) at 4:30PM Eastern. Find out what Edward Snowden has to say on the future of the US. [Source: StartPage via Engadget]

edward-snowden

American technology policies could change significantly under Donald Trump, and that includes its stance on privacy. How will the new leader alter government surveillance, for example? Edward Snowden might have an answer. The whistleblower and Dutch search engine StartPage are hosting a live event on November 10th at 4:30PM Eastern to address what happens to privacy in the Trump era, among other questions. Snowden speaking engagements are nothing new, but this is special — he’s more than a little familiar with government spying activities, and this is his first chance to opine on how things might be different under a new administration.

Snowden hasn’t said much of anything about the subject as of this writing. However, Trump doesn’t exactly have a stellar record on internet privacy so far. He has proposed reauthorizing the Patriot Act and the previous, less restrained NSA mass surveillance that took place while the Act was in force. He tends to “err on the side of security” over privacy, even if he’s not especially fond of it. As such, Snowden probably won’t have many kind things to say. He’s in favor of more privacy wherever possible, and that could easily put him at greater odds with the US government than he is now.

For wireless communication, we’re all stuck on the same traffic-clogged highway—it’s a section of the electromagnetic spectrum known as radio waves.

Advancements have made the highway more efficient, but bandwidth issues persist as wireless devices proliferate and the demand for data grows. The solution may be a nearby, mostly untapped area of the electromagnetic spectrum known as the terahertz band.

“For wireless communication, the terahertz band is like an express lane. But there’s a problem: there are no entrance ramps,” says Josep Jornet, PhD, assistant professor in the Department of Electrical Engineering at the University at Buffalo School of Engineering and Applied Sciences.

Read more

When it comes to the placement of interior lighting, much of the thought involved tends to relate to reaching nearby outlets. But the latest lights Toronto-based Nanoleaf may end up providing creative individuals one extra element to puzzle over. The Nanoleaf Aurora Smarter Kit is designed to be a modular lighting solution, featuring WiFi-controlled, color-adjustable, triangular panels that snap together like Lego.

Read more

By now, most Bitcoin and Blockchain enthusiasts are aware of four looming issues that threaten the conversion of Bitcoin from an instrument of academics, criminal activity, and closed circle communities into a broader instrument that is fungible, private, stable, ubiquitous and recognized as a currency—and not just an investment unit or a transaction instrument.

These are the elephants in the room:

  • Unleashing high-volume and speedy transactions
  • Governance and the concentration of mining influence among pools, geography or special interests
  • Privacy & Anonymity
  • Dwindling mining incentives (and the eventual end of mining). Bitcoin’s design eventually drops financial incentives for transaction validation. What then?

As an Op-Ed pundit, I value original content. But the article, below, on Bitcoin fungibility, and this one on the post-incentive era, are a well-deserved nod to inspired thinking by other writers on issues that loom over the cryptocurrency community.

This article at Coinidol comes from an unlikely source: Jacob Okonya is a graduate student in Uganda. He is highly articulate, has a keen sense of market economics and the evolution of technology adoption. He is also a quick study and a budding columnist.

What Happens When Bitcoin Mining Rewards Diminish To Zero?

Jacob addresses this last issue with clarity and focus. I urge Wild Ducks to read it. My response, below touches on both issues 3 and 4 in the impromptu list, above.


Sunset mining incentives—and also the absence of supporting fully anonymous transactions—are two serious deficiencies in Bitcoin today.
I am confident that both shortcomings will be successfully addressed and resolved.

Thoughts about Issues #3 and #4: [Disclosure] I sit on the board at CRYPSA and draft whitepapers and position statements.*

Blockchain Building: Dwindling Incentives

mining-incentive-02Financial incentives for miners can be replaced by non-financial awards, such as recognition, governance, gaming, stakeholder lotteries, and exchange reputation points. I am barely scratching the surface. Others will come up with more creative ideas.

Last year, at the 2015 MIT Bitcoin Expo, Keynote speaker Andreas Antonopoulos expressed confidence that Bitcoin will survive the sunset of miner incentives. He proposed some novel methods of ongoing validation incentives—most notably, a game theory replacement. Of course, another possibility is the use of very small transaction fees to continue financial incentives.

Personally, I doubt that direct financial incentives—in the form of microcash payments— will be needed. Ultimately, I envision an ecosystem in which everyone who uses Bitcoin to buy, sell, gift, trade, or invest will avoid fees while creating fluidity—by sharing the CPU burden. All users will validate at least one Blockchain transaction for every 5 transactions of their own.

Today, that burden is complex by design, because it reflects increasing competition to find a diminishing cache of unmined coins. But without that competition, the CPU overhead will be trivial. In fact, it seems likely that a validation mechanism could be built into every personal wallet and every mobile device app. The potential for massive crowd-sourced scrutiny has the added benefit of making the blockchain more robust: Trusted, speedy, and resistant to attack.

Transaction Privacy & Anonymity

Bitcoin’s lack of rock-solid, forensic-thwarting anonymity is a weak point that must ultimately be addressed. It’s not about helping criminals, it’s about liberty and freedoms. Detectives & forensic labs have classic methods of pursuing criminals. It is not our job to offer interlopers an identity, serial number and traceable event for every transaction.

Anonymity can come in one of three ways. Method #3 is least desirable:

  1. Add complex, multi-stage, multi-party mixing to every transaction—including random time delays, and parsing out fragments for real purchases and payments. To be successful, mixing must be ubiquitous. That is, it must be active with every wallet and every transaction by default. Ideally, it should even be applied to idle funds. This thwarts both forensic analysis mining-incentive-03and earnest but misguided attempts to create a registry of ‘tainted’ coins.
  2. Fork by consensus: Add anonymizing technology by copying a vetted, open source alt-coin
  3. Migrate to a new coin with robust, anonymizing tech at its core. To be effective, it must respect all BTC stakeholders with no other ownership, pre-mined or withheld distribution. Of course, it must be open, transparent and permissionless—with an opportunity and incentive for all users to be miners, or more specifically, to be bookkeepers.

That’s my opinion on the sunset of mining incentives and on transaction anonymity.
—What’s yours?


* Philip Raymond is co-chair of the Cryptocurrency Standards
Association. He was host and MC for the Bitcoin Event in New York.

I was pointed to this article by Jon Matonis, Founding Director, Bitcoin Foundation. I was sufficiently moved to highlight it here at Lifeboat Foundation, where I am a contributing writer.

On Fungibility, Bitcoin, Monero and ZCash … [backup]

This is among the best general introductions I have come across on traceability and the false illusion of privacy. The explanation of coin mixing provides and coin_mixing-03excellent, quick & brief overview.

Regarding transaction privacy, a few alt-coins provide enhanced immunity or deniability from forensic analysis. But if your bet is on Bitcoin (as it must be), the future is headed toward super-mixing and wallet trading by desgin and by default. Just as the big email providers haved added secure transit,
Bitcoin will eventually be fully randomized and anonymized per trade and even when assets are idle. It’s not about criminals; it’s about protecting business, government and individuals. It’s about liberty and our freedoms. [Continue below image]

coin_mixing-04
How to thwart forensic investigation: Fogify explains an advanced mixing process

The next section of the article explains the danger of losing fungibility due to transaction tracing and blacklisting. I can see only ONE case for this, and it requires a consensus and a hard fork (preferably a consensus of ALL stakeholders and not just miners). For example, when a great number of Etherium was stolen during the DAO meltdown.

My partner, Manny Perez, and I take opposing views of blacklisting coins based on their ‘tainted’ history (according to “The Man”, of course!). I believe that blacklists must ultimately be rendered moot by ubiquitous mixing, random transaction-circuit delays, dilbert-060219and multiple-transaction ‘washing’ (intentionally invoking a term that legislators and forensic investigators hate)—Manny feels that there should be a “Law and Order” list of tainted coins. Last year, our Pro-&-Con views were published side-by-side in this whitepaper.

Finally, for Dogbert’s take on fungible, click here. I bought the domain fungible.net many years ago, and I still haven’t figured out what to do with it. Hence this Dilbert cartoon. smile
____________
Philip Raymond is co-chair of The Cryptocurrency Standards Association.
He also presents on privacy, anonymity, blind signaling & antiforensics.

I argued in my 2015 paper “Why it matters that you realize you’re in a Computer Simulation” that if our universe is indeed a computer simulation, then that particular discovery should be commonplace among the intelligent lifeforms throughout the universe. The simple calculus of it all being (a) if intelligence is in part equivalent to detecting the environment (b) the environment is a computer simulation © eventually nearly all intelligent lifeforms should discover that their environment is a computer simulation. I called this the Savvy Inevitability. In simple terms, if we’re really in a Matrix, we’re supposed to eventually figure that out.

Silicon Valley, tech culture, and most nerds the world over are familiar with the real world version of the question are we living in a Matrix? The paper that’s likely most frequently cited is Nick Bostrom’s Are you living in a Computer Simulation? Whether or not everyone agrees about certain simulation ideas, everyone does seem to have an opinion about them.

Recently, the Internet heated up over Elon Musk’s comments at a Vox event on hot tub musings of the simulation hypothesis. Even Bank of America published an analysis of the simulation hypothesis, and, according to Tad Friend in an October 10, 2016 article published in New Yorker, “two tech billionaires have gone so far as to secretly engage scientists to work on breaking us out of the simulation.”

Read more

I remember working on data transfer and experimental apps on the NET in 1990 to 1995. And, did it ever change during just those 5 years. I cannot even imagine 1969.


On October 29th, 1969, the internet got its start when the first host-to-host connection was made between UCLA and the Stanford Research Institute. See how much you know about the invention that would change the world with some trivia questions…

Read more

Get Ready Folks! Imagine a QC DarkNet as it will too come.


Quantum teleportation brings to mind Star Trek’s transporter, where crew members are disassembled in one location to be reassembled in another. Real quantum teleportation is a much more subtle effect where information is transferred between entangled quantum states. It’s a quantum trick that could give us the ultimate in secure communication. While quantum teleportation experiments have been performed countless times in the lab, doing it in the real world has proved a bit more challenging. But a recent experiment using a dark fibre portion of the internet has brought quantum teleportation one step closer to real world applications.

The backbone of the internet is a network of optical fibre. Everything from your bank transactions to pictures of your cat travel as beams of light through this fibre network. However there is much more fibre that has been laid than is currently used. This unused portion of the network is known as dark fibre. Other than not being currently used, the dark fiber network has the same properties as the web we currently use. This new experiment used a bit of this dark web in Calgary to teleport a photon state under real world conditions.

The basic process of quantum teleportation begins with two objects (in this case photons) that are quantumly entangled. This basically means the state of these two objects are connected in such a way that a measurement of one object affects the state of the other. For quantum teleportation, one of these entangled objects is measured in combination with the object to be “teleported” (another photon). The result of this measurement is then sent to the other location, where a similar combined measurement is made. Since the entangled objects are part of both measurements, quantum information can be “teleported.” This might seem like an awkward way to send information, but it makes for a great way to keep your messages secret. Using this method, Alice can basically encrypt a message using the entangled objects, send the encrypted message to Bob, who can then make his own measurement of the entangled state to decode the message.