Toggle light / dark theme

Nuclear clock technology enables unprecedented investigation of fine-structure constant stability

In 2024, TU Wien presented the world’s first nuclear clock. Now it has been demonstrated that the technology can also be used to investigate unresolved questions in fundamental physics.

Thorium atomic nuclei can be used for very specific precision measurements. This had been suspected for decades, and the search for suitable atomic nucleus states has been ongoing worldwide. In 2024, a team from TU Wien, with the support of international partners, achieved the decisive breakthrough: the long-discussed nuclear transition was found. Shortly afterward, it was demonstrated that thorium can indeed be used to build high-precision nuclear clocks.

Now, the next major success in high-precision research on thorium nuclei has been achieved: When the thorium nucleus changes between different states, it slightly alters its elliptical shape.

Hair regrowth in just 20 days: Taiwanese researchers made a breakthrough hair serum that promises hair restoration within a month

In a breakthrough that could offer new hope to millions experiencing hair loss, researchers from National Taiwan University (NTU) have developed a rub-on serum that reportedly restores hair growth within 20 days. The innovative formulation, derived from natural fatty acids, has shown remarkable results in early laboratory tests and even in limited self-experiments by the study’s lead researcher.

The serum works by stimulating fat cells in the skin to regenerate hair follicles — a process inspired by the body’s natural response to irritation and injury. This mechanism, known as hypertrichosis, has long been linked to increased hair growth following skin damage or inflammation.

According to Professor Sung-Jan Lin, who led the study, the idea emerged from observing how minor skin irritation could trigger hair regeneration. ‘Skin injury not only induces tissue inflammation but also stimulates hair regeneration,’ Lin explained. ‘Our research shows that fatty acids can achieve similar effects safely and effectively.’


Researchers at National Taiwan University have developed a rub-on serum using natural fatty acids that reportedly stimulates hair growth within 20 days. Inspired by the body’s natural response to injury, the serum regenerates hair follicles by stimulating fat cells. The patented formulation has shown promising results in laboratory tests and self-experiments, with plans for human clinical trials.

Weather radar data reveal alarming declines in insect populations

A research team including a Keele University scientist have made a breakthrough in monitoring insect populations across the UK using weather radar data. Traditionally used to track rainfall and storms, these radars are now helping researchers monitor the daily movements and long-term numbers of flying and floating creatures—including bees, moths, flies, spiders, and other arthropods.

Double-layer electrode design powers next-gen silicon-based batteries for faster charging and longer range EVs

New research, led by Queen Mary University of London, demonstrates that a double-layer electrode design, guided by fundamental science through operando imaging, shows remarkable improvements in the cyclic stability and fast-charging performance of automotive batteries, with strong potential to reduce costs by 20–30%.

The research, published today in Nature Nanotechnology, was led by Dr. Xuekun Lu, Senior Lecturer in Green Energy at Queen Mary University of London.

In the study, the researchers introduce an evidence-guided double-layer design for silicon-based composite electrodes to tackle key challenges in the Si-based — a breakthrough with strong potential for next-generation high-performance batteries.

Bacterial motility helps uncover how self-propelled particles distribute in active matter systems

A collaborative team of physicists and microbiologists from UNIST and Stanford University has, for the first time, uncovered the fundamental laws governing the distribution of self-propelled particles, such as bacteria.

Published in Physical Review Letters, this breakthrough has been jointly led by Professor Joonwoo Jeong in the UNIST Department of Physics, Professor Robert J. Mitchell in the UNIST Department of Biological Sciences, and Professor Sho C. Takatori at Stanford University.

The study reveals that the distribution of living bacteria is governed by a delicate balance between their motility and their affinity for specific liquid environments. Interestingly, the findings highlight a phenomenon consistent with the like-attracts-like principle.

Balancing innovation and safety in FLASH radiotherapy

FLASH radiotherapy delivers a cancer treatment dose in less than a second, reducing side effects while maintaining tumour control. This Review explores technological advances, safety considerations and future directions needed to bring this promising ultra-fast radiotherapy approach into clinical practice.

First-ever detection of ‘heavy water’ in a planet-forming disk

The discovery of ancient water in a planet-forming disk reveals that some of the water found in comets—and maybe even Earth—is older than the disk’s star itself, offering breakthrough insights into the history of water in our solar system.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have made a first-ever detection of doubly deuterated water (D₂O, or “heavy water”) in a planet-forming disk around V883 Ori, a young star. This means that the water in this disk, and by extension the water in comets that form here, predates the birth of the star itself, having journeyed through space from ancient molecular clouds long before this solar system formed.

The research is published in the journal Nature Astronomy.

‘Spirit of American innovation’: Melania Trump launches nationwide AI contest for students

Students who sign up for the project will be guided by educators. They will work in teams to understand how AI technologies can be used to address challenges in their communities.

The project is aimed at bringing students and educators together “to solve real-world problems in their communities using AI-powered solutions with an opportunity to showcase their solutions at a national level.” According to the White House website, the initiative focuses on empowering the next generation “to explore and innovate within this rapidly evolving field.”

All students who take part in the competition will recieve a certificate, while the national winners will be awarded cash prizes, cloud credits and an invitation to showcase their work at the White House.

Scientists create a new form of light matter in a quasicrystal

Researchers have for the first time created a reconfigurable polariton 2D quasicrystal. The team from the Skolkovo Institute of Science and Technology (Skoltech), in collaboration with colleagues from the University of Iceland, the University of Warsaw, and the Institute of Spectroscopy of the Russian Academy of Sciences, demonstrated that this unique state of matter exhibits long-range order and a novel type of phase synchronization, opening new pathways for research into exotic phenomena such as supersolids and superfluidity in aperiodic settings.

The breakthrough, published in Science Advances, was achieved using exciton-polaritons—hybrid quasiparticles that are part light and part matter. By arranging these polaritons in a Penrose tiling, a famous aperiodic pattern with five-fold symmetry, the team observed the emergence of a macroscopic coherent state where the individual nodes synchronized in a nontrivial way, unlike anything seen in conventional periodic crystals.

[News] Chinese Scientists Developed a Novel Chip, Crossing a Century-Old Hurdle

According to the Institute for Artificial Intelligence at Peking University, a research team led by Researcher Sun Zhong and his collaborators has recently published a paper in the international journal Nature Electronics, reporting a major breakthrough in novel computing architectures.

The team successfully developed a high-precision and scalable analog matrix computing chip based on resistive random-access memory (RRAM). For the first time, the chip achieves analog computation accuracy rival to that of digital systems, improving the precision of traditional analog computing by an astonishing five orders of magnitude.

Performance evaluations show that when solving large-scale MIMO signal detection and other key scientific problems, the chip’s computational throughput and energy efficiency are hundreds to thousands of times higher than those of today’s top-tier digital processors (GPU).

/* */