Toggle light / dark theme

In a major breakthrough, scientists have built a tool to predict the odour profile of a molecule, just based on its structure. It can identify molecules that look different but smell the same, as well as molecules that look very similar but smell totally different.

Professor Jane Parker, University of Reading, said: Vision research has wavelength, hearing research has frequency – both can be measured and assessed by instruments. But what about smell? We don’t currently have a way to measure or accurately predict the odour of a molecule, based on its molecular structure.

You can get so far with current knowledge of the molecular structure, but eventually you are faced with numerous exceptions where the odour and structure don’t match. This is what has stumped previous models of olfaction. The fantastic thing about this new ML generated model is that it correctly predicts the odour of those exceptions.

Generative AI is dominating the conversation in 2023, and the design community is no exception to its transformative potential. Product innovations fueled by emerging AI capabilities have the potential to unlock new opportunities and put the power of real-time intelligence in customers’ hands like never before.

As a design leader focused on creating innovative products and solutions for millions of our consumers and for thousands of our employees, I find AI’s potential particularly exciting for the design discipline. New technological advances like generative AI, computer vision, natural language processing and large language models can augment, complement and elevate the capabilities of designers, enabling them to focus on work that delivers maximum value to their users. At the same time, there are ongoing and important conversations about designing and implementing new safeguards and frameworks to mitigate risk and ensure the responsible application of AI.

Let’s take a closer look at the dynamic intersection of AI and design, focusing on how AI-enhanced design tools can enhance designer workflows, improve outputs and fuel product innovation.

The backpack also boasts a camera, microphone, speaker, network interface, processor, and storage, of course.

A person with poor vision heading to work faces many challenges, such as difficulty identifying the traffic lights. One day, the person is handed a backpack that is able to recognize the objects surrounding them, describing the people and stores nearby.

Now, an innovation can help support individuals with multiple tasks through the tech giant – Microsoft’s latest innovation – an artificial intelligence (AI) endowed smart backpack.

New research may lead to highly precise, power-efficient light measurement tools, driving advancements in various technology fields.

Researchers have discovered a way to improve optical frequency combs to measure light waves with much higher precision than previously accomplished. This could lead to the development and improvement of devices that require such precision, like atomic clocks. The researchers showed that dissipative Kerr solitons (DKSs) can create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications.


N. Phillips/NIST/Wikimedia Commons.

In a major breakthrough, scientists have built a tool to predict the odor profile of a molecule, just based on its structure. It can identify molecules that look different but smell the same, as well as molecules that look very similar but smell totally different. The research was published in Science.

Professor Jane Parker, University of Reading, said, “Vision research has wavelength, hearing research has frequency—both can be measured and assessed by instruments. But what about ? We don’t currently have a way to measure or accurately predict the odor of a molecule, based on its .”

“You can get so far with current knowledge of the molecular structure, but eventually you are faced with numerous exceptions where the odor and structure don’t match. This is what has stumped previous models of olfaction. The fantastic thing about this new ML generated model is that it correctly predicts the odor of those exceptions.”

This is good news! The article says this could lead to treatment of other cancers.


A particularly aggressive form of childhood cancer that forms in muscle tissue might have a new treatment option on the horizon.

Scientists have successfully induced rhabdomyosarcoma cells to transform into normal, healthy muscle cells. It’s a breakthrough that could see the development of new therapies for the cruel disease, and it could lead to similar breakthroughs for other types of human cancers.

“The cells literally turn into muscle,” says molecular biologist Christopher Vakoc of Cold Spring Harbor Laboratory.