Toggle light / dark theme

Why your faucet drips: Water jet breakup traced to angstrom-scale thermal capillary waves

Some phenomena in our daily lives are so commonplace that we don’t realize there could be some very interesting physics behind them. Take a dripping faucet: why does the continuous stream of water from a faucet eventually break up into individual droplets? A team of physicists studied this question and reached surprising conclusions.

The breakthrough in understanding how a water jet breaks up into droplets was made by a team consisting of Stefan Kooij, Daniel T. A. Jordan, Cees J. M. van Rijn, and Daniel Bonn from the University of Amsterdam (Van der Waals-Zeeman Institute / Institute of Physics), along with Neil M. Ribe from the Université Paris-Saclay. The study is published in the journal Physical Review Letters.

New Breakthrough to Strengthen Bone Could Reverse Osteoporosis

A recent study points to a key bone-strengthening mechanism at work in the body, which could be targeted to treat the bone-weakening disease, osteoporosis.

Led by researchers from the University of Leipzig in Germany and Shandong University in China, the study identified the cell receptor GPR133 (also known as ADGRD1) as being crucial to bone density, via bone-building cells called osteoblasts.

Variations in the GPR133 gene had previously been linked to bone density, leading scientists to turn their attention to the protein it encoded.

Underwriting Superintelligence: AIUC’s Insurance, Standards & Audits to Accelerate AI Adoption

Rune Kvist and Rajiv Dattani, co-founders of the AI Underwriting Company, reveal their innovative strategy for unlocking enterprise AI adoption. They detail how certifying and insuring AI agents, through rigorous technical standards, periodic audits, and insurance, builds crucial \.

Biology Breakthrough: Scientists Discover First New Plant Tissue in 160 Years — and It Supercharges Crop Yields

A research group led by Dr. Ryushiro Kasahara has discovered a new plant tissue essential for seed formation, which will be named in his honor. A research team at Nagoya University in Japan has identified a previously unknown plant tissue that plays a crucial role in forming seeds. This marks the

Meteorite crater hosts methane-making microbes—a clue to life on Mars?

Scientists have discovered living microbes producing methane in the fractured rocks deep inside Sweden’s Siljan impact crater, offering insights into Earth’s earliest life and the search for life beyond our planet.

This breakthrough not only sheds light on one of Earth’s most ancient metabolic processes —methanogenesis—but also strengthens the link between meteorite impact structures and microbial survival in extreme environments. The findings are published in the journal mBio.

Methanogenesis is considered one of the earliest metabolisms on Earth, and its presence in deep subsurface environments has long intrigued scientists. Now, for the first time, active microbial methane production has been confirmed in a terrestrial impact crater. Using cultures enriched from fluids 400 meters below the surface, the team demonstrated methane generation from several carbon sources, including indigenous oil.

Soft robots harvest ambient heat for self-sustained motion

A warm hand is enough to drive motion in tiny Salmonella-inspired robots that harness molecular-level dynamic bonding.

A team of researchers from China and the U.S. came together to design soft robots with a coordination-motorized oscillator (CoMO) that can make self-sustained micromovements by harvesting small amounts of energy from sunlight or body heat. At the heart of this innovation is a new supramolecular polydimethylsiloxane (PDMS)-based elastic polymer dynamically crosslinked by Eu3+ at the center.

The findings are published in Angewandte Chemie.

Scientists Unveil Breakthrough Low-Temperature Fuel Cell That Could Revolutionize Hydrogen Power

Researchers at Kyushu University have created a solid oxide fuel cell (SOFC) exhibiting exceptionally high proton conductivity at 300°C. As worldwide energy needs continue to rise, scientists, industry leaders, and policymakers are collaborating to find reliable ways to meet growing demand. This

Hidden weakness makes prostate cancer self-destruct

Scientists found a hidden flaw in prostate cancer’s survival system. Researchers have discovered that prostate cancer depends on two key enzymes, PDIA1 and PDIA5, to survive and resist therapy. When blocked, these enzymes cause the androgen receptor to collapse, killing cancer cells and enhancing the effects of drugs like enzalutamide. They also disrupt the cancer’s energy system, striking it on multiple fronts. This breakthrough could open a new path to overcoming drug $resistance in advanced prostate cancer.

An international team of researchers has identified a new weakness in prostate cancer cells that could lead to more effective treatments for one of the most common cancers among men.

The study, published in the Proceedings of the National Academy of Sciences (PNAS), was led by scientists from Flinders University in Australia and South China University of Technology. Their findings highlight two enzymes, PDIA1 and PDIA5, that play a key role in helping prostate cancer cells grow, survive, and resist existing treatments.

/* */