Toggle light / dark theme

COVID-19 Breakthrough: Scientists Identify Possible “Achilles’ Heel” of SARS-CoV-2 Virus

One of the reasons the SARS-CoV-2 virus is so successful u2014 and thus dangerous u2014 is that it can suppress the non-specific immune response. In addition, it lets the human cell produce the viral protein PLpro (papain-like protease). PLpro has two functions: It plays a role in the maturation and release of new viral particles, and it suppresses the development of type 1 interferons. The German and Dutch researchers have now been able to monitor these processes in cell culture experiments. Moreover, if they blocked PLpro, virus production was inhibited and the innate immune response of the human cells was strengthened at the same time.nn


COVID-19 Research: Anti-viral Strategy With Double Effect

In the case of an infection, the SARS-CoV-2 virus must overcome various defense mechanisms of the human body, including its non-specific or innate immune defense. During this process, infected body cells release messenger substances known as type 1 interferons. These attract natural killer cells, which kill the infected cells.

One of the reasons the SARS-CoV-2 virus is so successful — and thus dangerous — is that it can suppress the non-specific immune response. In addition, it lets the human cell produce the viral protein PLpro (papain-like protease). PLpro has two functions: It plays a role in the maturation and release of new viral particles, and it suppresses the development of type 1 interferons. The German and Dutch researchers have now been able to monitor these processes in cell culture experiments. Moreover, if they blocked PLpro, virus production was inhibited and the innate immune response of the human cells was strengthened at the same time.

The future of AI: 12 possible breakthroughs, and beyond

Interesting.


The AI of 5–10 years time could be very different from today’s AI. The most successful AI systems of that time will not simply be extensions of today’s deep neural networks. Instead, they are likely to include significant conceptual breakthroughs or other game-changing innovations.

That was the argument I made in a presentation on Thursday to the Global Data Sciences and Artificial Intelligence meetup. The chair of that meetup, Pramod Kunji, kindly recorded the presentation.

You can see my opening remarks in this video:

‘Major’ breakthrough in Covid-19 drug makes UK professors millionaires

Three professors at the University of Southampton school of medicine have this week made a “major breakthrough” in the treatment of coronavirus patients and become paper millionaires at the same time.

Almost two decades ago professors Ratko Djukanovic, Stephen Holgate and Donna Davies discovered that people with asthma and chronic lung disease lacked a protein called interferon beta, which helps fight off the common cold. They worked out that patients’ defences against viral infection could be boosted if the missing protein were replaced.

The academics created a company, Synairgen, to turn their discoveries into treatments. It floated on the stock market in 2004, but a deal with AstraZeneca to treat viral infections in asthmatics fell through, and the shares collapsed.

P2.180 TMR5 (ZedupexTM) as a Management Therapy For Herpes Infections: Results of Preclinical Evaluations

Did you know there was a natural treatment for herpes “that has no treatment”. People have been treating disease for centuries. Just because something is not approved does not mean it does not work, it only means it is not approved. Even corruption can stall the approval process.


TMR5 (ZedupexTM) is a product of a Kenyan medicinal plant, prepared as a lyophilized extract and a cream. The products have been evaluated for preclinical safety and efficacy in suitable in vitro and in vivo systems of herpes infections. Herpes is a viral infection affecting over 60% of the sub-Saharan Africa young adult population. It is caused by two similar viruses, HSV-1 and HSV-2 which share 50% gene sequence homology. The infection in a major cause of genital ulcer disease, associated with increased risks of HIV acquisition and transmission. The aim is to develop TMR5 as an alternative anti-herpes agent, this being necessitated by increased resistance to available drugs and the cost of the drug of choice, acyclovir, in the region. Using the trypan blue exclusion test, plaque inhibition and viral yield reduction assays for assessment of cytotoxicity (CC50) and efficacy (EC50), and Mice and guinea pig cutaneous and genital HSV infection models respectively following oral and topical treatments, TMR5 exhibited no cytotoxicity in mammalian cell lines with a wide therapeutic index (CC50 ≥ 58.5 ± 4.6µg/ml). An EC50 of ≤ 14.7 ± 3.7µg/ml for both wild type and resistant strains of HSV was realised in plaque and viral yield assays. Oral (250 mg/kg) and topical (10% cream) administrations exhibited significant delay in onset of infections, hindered progression of infection to lethal forms with increased mean survival times and low mortality in both mice and guinea pig models. No acute toxicity has been realised at the therapeutic concentrations. TMR5 has demonstrated a high potential as an anti-herpes agent and arrangements are presently underway to evaluate its efficacy and safety in human clinical trials. A pilot production scheme supported by the National Commission for Science, Technology and Innovation (NCSTI) of Kenya has been undertaken as means of developing TMR5 as an alternative management therapy for herpes infections.

Coronavirus: Llamas provide key to immune therapy

As Fifi the llama munches on grass on a pasture in Reading, her immune system has provided the template for a coronavirus treatment breakthrough.

Scientists from the UK’s Rosalind Franklin Institute have used Fifi’s specially evolved antibodies to make an immune-boosting therapy.

The resulting llama-based, Covid-specific “antibody cocktail” could enter clinical trials within months.

/* */