Toggle light / dark theme

Scientists Reveal: We’re Nearly Living in a Simulation. AI Can Help Us Hack and Escape

The potential pathways through which AI could help us escape a simulated reality are both fascinating and complex. One approach could involve AI discovering and manipulating the underlying algorithms that govern the simulation. By understanding these algorithms, AI could theoretically alter the simulation’s parameters or even create a bridge to the “real” world outside the simulation.

Another approach involves using AI to enhance our cognitive and perceptual abilities, enabling us to detect inconsistencies or anomalies within the simulation. These anomalies, often referred to as “glitches,” could serve as clues pointing to the artificial nature of our reality. For instance, moments of déjà vu or inexplicable phenomena might be more than just quirks of human perception—they could be signs of the simulation’s imperfections.

While the idea of escaping a simulation is intriguing, it also raises profound ethical and existential questions. For one, if we were to confirm that we are indeed living in a simulation, what would that mean for our understanding of free will, identity, and the meaning of life? Moreover, the act of escaping the simulation could have unforeseen consequences. If the simulation is designed to sustain and nurture human life, breaking free from it might expose us to a harsher and more dangerous reality.

How An Algorithm Feels From Inside

“If a tree falls in the forest, and no one hears it, does it make a sound?” I remember seeing an actual argument get started on this subject—a fully naive argument that went nowhere near Berkeleyan subjectivism. Just:

“It makes a sound, just like any other falling tree!” “But how can there be a sound that no one hears?”

The standard rationalist view would be that the first person is speaking as if “sound” means acoustic vibrations in the air; the second person is speaking as if “sound” means an auditory experience in a brain. If you ask “Are there acoustic vibrations?” or “Are there auditory experiences?”, the answer is at once obvious. And so the argument is really about the definition of the word “sound”

Researchers Propose a Smaller, more Noise-Tolerant Quantum Circuit for Cryptography

Researchers Propose a #Smaller, more #Noise-#Tolerant #Quantum #Circuit for #Cryptography.

MIT researchers new algorithm is as fast as Regev’s, requires fewer qubits, and has a higher tolerance to quantum noise, making it more feasible to implement…


The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.

Quantum computers, on the other hand, promise to rapidly crack complex cryptographic systems that a classical computer might never be able to unravel. This promise is based on a quantum factoring algorithm proposed in 1994 by Peter Shor, who is now a professor at MIT.

But while researchers have taken great strides in the last 30 years, scientists have yet to build a quantum computer powerful enough to run Shor’s algorithm.

Prospective multicenter study using artificial intelligence to improve dermoscopic melanoma diagnosis in patient care

Outperforms dermatologists in detecting melanoma, offering better diagnosis for challenging cases and improving patient care. 🩺🖥️


Heinlein, Maron, Hekler et al. evaluate an AI algorithm for detecting melanoma and compare its performance to that of dermatologist on a prospectively collected, external, heterogeneous dataset. The AI exhibits a significant performance advantage, especially in diagnosing challenging cases.

Will Machines Ever Become Conscious?

AI may equal human intelligence without matching the true nature of our experiences.

By Christof Koch

A future where the thinking capabilities of computers approach our own is quickly coming into view. We feel ever more powerful machine-learning (ML) algorithms breathing down our necks. Rapid progress in coming decades will bring about machines with human-level intelligence capable of speech and reasoning, with a myriad of contributions to economics, politics and, inevitably, warcraft. The birth of true artificial intelligence will profoundly affect humankind’s future, including whether it has one.

Harnessing Automated Insulin Delivery: Case Reports from Marathon Runners with Type 1 Diabetes

How can machine learning help individuals with type 1 diabetes (T1D)? This is what a study presented at this year’s Annual Meeting of the European Association for the Study of Diabetes (EASD) hopes to address as a team of researchers have developed a system using machine learning capable of managing blood sugars levels with such proficiency that those using system were able to lead lives far more active than the average T1D patient.

For the study, the researchers developed the AID system, which uses closed-loop technology that delivers insulin based on readings from the machine learning algorithm, resulting in a 50-year-old man, a 40-year-old man, and a 34-year-old woman with T1D being able to run hours-long marathons in Tokyo, Santiago, and Paris, respectively. This study holds the potential to help develop better technology capable of allowing T1D diabetes patients to stay in shape without constantly fearing for their blood sugar levels, which can lead to long-term health problems, including hyperglycemia, nerve damage, or a heart attack.

“Despite better systems for monitoring blood sugars and delivering insulin, maintaining glucose levels in target range during aerobic training and athletic competition is especially difficult,” said Dr. Maria Onetto, who is in the Department of Nutrition at the Pontifical Catholic University of Chile and lead author of the study. “The use of automated insulin delivery technology is increasing, but exercise continues to be a challenge for individuals with T1D, who can still struggle to reach the recommended blood sugar targets.”

Wormhole: A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. [ 1 ]

A can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both).

Wormholes are consistent with the general theory of relativity, but whethers actually exist is uncertain. Many scientists postulate thats are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object. [ 2 ] A well-known analogy of such constructs is provided by the Klein bottle, displaying a hole when rendered in three dimensions but not in four or higher dimensions.

Einstein’s famous equation first demonstrated the creation of matter from light

Scientists Create Matter from Pure Light, Demonstrating Einstein’s E=mc² Equation in Action.

Physicists at Brookhaven National Laboratory have achieved a groundbreaking experiment, creating matter from light by demonstrating the Breit-Wheeler process. Using the Relativistic Heavy Ion Collider, they accelerated heavy ions to generate nearly real photons, leading to the formation of electron-positron pairs. This experiment showcases Einstein’s E=mc² equation in action, aligning with predictions for transforming energy into matter. While these virtual photons act similarly to real ones, the experiment is a crucial step towards proving the process with real photons when technology advances to create gamma-ray lasers. Don’t forget to comment your thought about this!

/* */